Tantalum-related thin films containing different amounts of nitrogen are sputter deposited at different argon-to-nitrogen flow rate ratios on (100) silicon substrates. Using x-ray diffractometry, transmission electron microscopy, composition and resistivity analyses, and bending-beam stress measurement technique, this work examines the impact of varying the nitrogen flow rate, particularly on the crystal structure, composition, resistivity, and residual intrinsic stress of the deposited Ta2N thin films. With an adequate amount of controlled, reactive nitrogen in the sputtering gas, thin films of the tantalum nitride of nominal formula Ta2N are predominantly amorphous and can exist over a range of nitrogen concentrations slightly deviated from stoichiometry. The single-layered quasi-amorphous Ta2N(a-Ta2N) thin films yield intrinsic compressive stresses in the range 3–5 GPa. In addition, the use of the 40-nm-thick a-Ta2N thin films with different nitrogen atomic concentrations (33% and 36%) and layering designs as diffusion barriers between silicon and copper are also evaluated. When subjected to high-temperature annealing, the single-layered a-Ta2N barrier layers degrade primarily by an amorphous-to-crystalline transition of the barrier layers. Crystallization of the single-layered stoichiometric a-Ta2N(Ta67N33) diffusion barriers occurs at temperatures as low as 450 °C. Doing so allows copper to preferentially penetrate through the grain boundaries or thermal-induced microcracks of the crystallized barriers and react with silicon, sequentially forming {111}-facetted pyramidal Cu3Si precipitates and TaSi2 Overdoping nitrogen into the amorphous matrix can dramatically increase the crystallization temperature to 600 °C. This temperature increase slows down the inward diffusion of copper and delays the formation of both silicides. The nitrogen overdoped Ta2N(Ta64N36) diffusion barriers can thus be significantly enhanced so as to yield a failure temperature 100 °C greater than that of the Ta67N33 diffusion barriers. Moreover, multilayered films, formed by alternately stacking the Ta67N33 and Ta64N36 layers with an optimized bilayer thickness (λ) of 10 nm, can dramatically reduce the intrinsic compressive stress to only 0.7 GPa and undergo high-temperature annealing without crystallization. Therefore, the Ta67N33/Ta64N36 multilayered films exhibit a much better barrier performance than the highly crystallization-resistant Ta64N36 single-layered films.

1.
S. P.
Murarka
,
Mater. Sci. Eng., R.
19
,
87
(
1997
).
2.
S. Q.
Wang
,
Mater. Res. Bull.
19
,
30
(
1994
).
3.
H.
Ono
,
T.
Nakano
, and
T.
Ohta
,
Appl. Phys. Lett.
64
,
1511
(
1994
).
4.
M. H.
Tsai
,
S. C.
Sun
,
H. T.
Chiu
, and
S. H.
Chuang
,
Appl. Phys. Lett.
68
,
141
(
1996
).
5.
S. C. Sun, M. H. Tsai, H. T. Chiu, and S. H. Chuang, Proceedings of the 13rd International VLSI Multilevel Interconnection Conference, Santa Clara, CA, 1996, p. 151.
6.
S. C. Sun and J. H. Liu, Proceedings of the 14th International VLSI Multilevel Interconnection Conference, Santa Clara, CA, 1997, p. 231.
7.
J. Y.
Lee
and
J. W.
Park
,
J. Appl. Phys.
35
,
4280
(
1996
).
8.
M. T.
Wang
,
Y. C.
Lin
, and
M. C.
Chen
,
J. Electrochem. Soc.
145
,
2538
(
1998
).
9.
T.
Oku
,
E.
Kawakami
,
M.
Uekubo
,
K.
Takahiro
,
S.
Yamaguchi
, and
M.
Murakami
,
Appl. Surf. Sci.
99
,
265
(
1996
).
10.
K. H.
Min
,
K. C.
Chun
, and
K. B.
Kim
,
J. Vac. Sci. Technol. B
14
,
3263
(
1996
).
11.
M.
Takeyama
,
A.
Noya
,
T.
Sase
, and
A.
Ohta
,
J. Vac. Sci. Technol. B
14
,
674
(
1996
).
12.
M.
Stavrev
,
D.
Fischer
,
C.
Wenzel
,
K.
Drescher
, and
N.
Mattern
,
Thin Solid Films
307
,
79
(
1997
).
13.
M. H.
Tsai
,
S. C.
Sun
,
C. E.
Tsai
,
S. H.
Chuang
, and
H. T.
Chiu
,
J. Appl. Phys.
79
,
6932
(
1996
).
14.
M. H.
Tsai
,
S. C.
Sun
,
C. P.
Lee
,
H. T.
Chiu
,
C. E.
Tsai
,
S. H.
Chuang
, and
S. C.
Wu
,
Thin Solid Films
270
,
531
(
1995
).
15.
M. H.
Tsai
,
S. C.
Sun
,
H. T.
Chiu
,
C. E.
Tsai
, and
S. H.
Chuang
,
Appl. Phys. Lett.
67
,
1128
(
1995
).
16.
A. E.
Kaloyeros
et al.,
J. Electrochem. Soc.
146
,
170
(
1999
).
17.
G. S.
Chen
,
P. Y.
Lee
, and
S. T.
Chen
,
Thin Solid Films
353
,
264
(
1999
).
18.
M.-A.
Nicolet
,
Appl. Surf. Sci.
91
,
269
(
1995
).
19.
K.
Holloway
,
P. M.
Fryer
,
C.
Cabral
, Jr.
,
J. M. E.
Harper
,
P. J.
Bailey
, and
K. H.
Kelleher
,
J. Appl. Phys.
71
,
5433
(
1992
).
20.
J. S.
Reid
,
E.
Kolawa
,
R. P.
Ruiz
, and
M.-A.
Nicolet
,
Thin Solid Films
236
,
319
(
1993
).
21.
D. J.
Kim
,
Y. T.
Kim
, and
J. W.
Park
,
J. Appl. Phys.
82
,
4847
(
1997
).
22.
Y. J.
Lee
,
B. S.
Suh
,
M. S.
Kwon
, and
C. O.
Park
,
J. Appl. Phys.
85
,
1927
(
1999
).
23.
G. S.
Chen
,
S. T.
Chen
,
L. C.
Yang
, and
P. Y.
Lee
,
J. Vac. Sci. Technol. A
18
,
720
(
2000
).
24.
J. H.
Jou
,
L.
Hsu
, and
L. S.
Chang
,
Thin Solid Films
201
,
253
(
1991
).
25.
Joint Committee for Powder Diffraction Standards, Powder Diffraction File No. 25-1280 (JCPDS International Center for Diffraction Data, 1997).
26.
X.
Sun
,
E.
Kolawa
,
J. S.
Chen
,
J. S.
Reid
, and
M.-A.
Nicolet
,
Thin Solid Films
236
,
347
(
1996
).
27.
Joint Committee for Powder Diffraction Standards, Powder Diffraction File No. 26-0958 (JCPDS International Center for Diffraction Data, 1997).
28.
P. N.
Baker
,
Thin Solid Films
14
,
3
(
1972
).
29.
Constitution of Binary Alloys, edited by M. Hansen and K. Anderko (McGraw-Hill, New York, 1958), p. 987.
30.
A.
Schauer
and
M.
Roschy
,
Thin Solid Films
12
,
313
(
1972
).
31.
R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (PWS Boston, 1994), p. 439.
32.
P. B.
Mirkarimi
,
L.
Hultman
, and
S. A.
Barnett
,
Appl. Phys. Lett.
57
,
2654
(
1990
).
33.
M.
Shinn
and
S. A.
Barnett
,
J. Mater. Res.
7
,
901
(
1992
).
34.
X.
Chu
,
S. A.
Barnett
,
M. S.
Wong
, and
W. D.
Sproul
,
Surf. Coat. Technol.
57
,
13
(
1993
).
35.
H.
Ljungcrantz
,
C.
Engström
,
L.
Hultman
,
M.
Olsson
,
X.
Chu
,
M. S.
Wong
, and
W. D.
Sproul
,
J. Vac. Sci. Technol. A
16
,
3104
(
1998
).
36.
D.
Li
,
X. W.
Lin
,
S. C.
Cheng
,
V. P.
Dravid
,
Y. W.
Chung
,
M. S.
Wong
, and
W. D.
Sproul
,
Appl. Phys. Lett.
68
,
1211
(
1996
).
37.
X.
Chu
,
M. S.
Wong
,
W. D.
Sproul
,
S. L.
Rohde
, and
S. A.
Barnett
,
J. Vac. Sci. Technol. A
10
,
1604
(
1992
).
38.
D. S.
Gardner
and
P. A.
Flinn
,
IEEE Trans. Electron Devices
35
,
2160
(
1988
).
39.
K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969), p. 290.
This content is only available via PDF.
You do not currently have access to this content.