We use positron annihilation to study vacancy defects in GaAs grown at low temperatures (LT–GaAs). The vacancies in as-grown LT–GaAs can be identified to be Ga monovacancies, according to their positron lifetime and annihilation momentum distribution. The charge state of the vacancies is neutral. This is ascribed to the presence of positively charged antisite defects in vicinity to the vacancies. Theoretical calculations of the annihilation parameters show that this assignment is consistent with the data. The density of is related to the growth stoichiometry in LT–GaAs, i.e., it increases with the As/Ga beam equivalent pressure (BEP) and saturates at for a BEP⩾20 and a low growth temperature of Annealing at removes Instead, larger vacancy agglomerates with a size of approximately four vacancies are found. It will be shown that these vacancy clusters are associated with the As precipitates formed during annealing.
Skip Nav Destination
,
,
,
,
,
,
,
,
,
,
Article navigation
15 June 2000
Research Article|
June 15 2000
Defect identification in GaAs grown at low temperatures by positron annihilation
J. Gebauer;
J. Gebauer
Fachbereich Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
Search for other works by this author on:
F. Börner;
F. Börner
Fachbereich Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
Search for other works by this author on:
R. Krause-Rehberg;
R. Krause-Rehberg
Fachbereich Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
Search for other works by this author on:
T. E. M. Staab;
T. E. M. Staab
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
Search for other works by this author on:
W. Bauer-Kugelmann;
W. Bauer-Kugelmann
Institut für Nukleare Festkörperphysik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany
Search for other works by this author on:
G. Kögel;
G. Kögel
Institut für Nukleare Festkörperphysik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany
Search for other works by this author on:
W. Triftshäuser;
W. Triftshäuser
Institut für Nukleare Festkörperphysik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany
Search for other works by this author on:
P. Specht;
P. Specht
University of California and Lawrence Berkeley Laboratory, Berkeley, California 94720
Search for other works by this author on:
R. C. Lutz;
R. C. Lutz
University of California and Lawrence Berkeley Laboratory, Berkeley, California 94720
Search for other works by this author on:
E. R. Weber;
E. R. Weber
University of California and Lawrence Berkeley Laboratory, Berkeley, California 94720
Search for other works by this author on:
M. Luysberg
M. Luysberg
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
Search for other works by this author on:
J. Gebauer
F. Börner
R. Krause-Rehberg
T. E. M. Staab
W. Bauer-Kugelmann
G. Kögel
W. Triftshäuser
P. Specht
R. C. Lutz
E. R. Weber
M. Luysberg
Fachbereich Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
J. Appl. Phys. 87, 8368–8379 (2000)
Article history
Received:
October 25 1999
Accepted:
March 13 2000
Citation
J. Gebauer, F. Börner, R. Krause-Rehberg, T. E. M. Staab, W. Bauer-Kugelmann, G. Kögel, W. Triftshäuser, P. Specht, R. C. Lutz, E. R. Weber, M. Luysberg; Defect identification in GaAs grown at low temperatures by positron annihilation. J. Appl. Phys. 15 June 2000; 87 (12): 8368–8379. https://doi.org/10.1063/1.373549
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Introduction to neuromorphic functions of memristors: The inductive nature of synapse potentiation
So-Yeon Kim, Heyi Zhang, et al.
Piezoelectric thin films and their applications in MEMS: A review
Jinpeng Liu, Hua Tan, et al.
Related Content
Positron annihilation study of defects in boron implanted silicon
J. Appl. Phys. (June 2000)
Characterization of defects in (ZnMg)Se compounds by positron annihilation and photoluminescence
J. Appl. Phys. (August 2000)
Positron–electron autocorrelation function study of E-center in silicon
J. Appl. Phys. (November 2003)
Characterization of vacancies in as-grown and electron irradiated α-quartz by means of positron annihilation
J. Appl. Phys. (July 1999)
Positron-annihilation study of compensation defects in InP
J. Appl. Phys. (February 2002)