The refractive indices of AlxGa1−xAs epitaxial layers (0.176⩽x⩽1) are accurately determined below the band gap to wavelengths, λ<3 μm. The layers are grown on GaAs substrates by molecular beam epitaxy metal organic and chemical vapor deposition with thicknesses ranging from 4 to 10 μm. They form improper waveguide structures with the GaAs substrate. The measurements are based on the excitation of the improper waveguide modes with grating couplers at 23 °C. The refractive indices of the layers are derived from the modal propagation constants in the range of 730 nm<λ<830 nm with an estimated uncertainty of Δn=5×10−4. The temperature coefficient of the refractive index is investigated in the same spectral range. From the effective indices of the TE and TM modes, we derive the strain-induced birefringence and the elasto-optic coefficients. High-resolution x-ray diffraction is used to determine the strain of the layers. The layer compositions are obtained with inductively coupled plasma atomic emission spectroscopy. The measurement range of the refractive index is extended from the direct gap to λ<3 μm by observing the Fabry-Pérot interference fringes of the transmission spectra of isolated layers. The measured values of the refractive index and the elasto-optic coefficient are compared to calculated data based on semiempirical models described in the literature. Published data of the index of refraction on GaAs, AlAs and GaP are analyzed to permit the development of a modified Sellmeier approximation. The experimental data on AlxGa1−xAs can be fitted over the entire composition range 0⩽x⩽1 to provide an accurate analytical description as a function of composition, wavelength, and temperature.

1.
F.
Stern
,
Phys. Rev.
133
,
1653
(
1964
).
2.
M. A.
Afromowitz
,
Solid State Commun.
15
,
59
(
1974
).
3.
S.
Adachi
,
Phys. Rev. B
38
,
12345
(
1988
).
4.
D. W.
Jenkins
,
J. Appl. Phys.
68
,
1848
(
1990
).
5.
C.-H.
Lin
and
J. M.
Meese
,
J. Appl. Phys.
74
,
6341
(
1993
).
6.
R. J.
Deri
and
M. A.
Emanuel
,
J. Appl. Phys.
77
,
4667
(
1995
).
7.
Y.
Kokubo
and
I.
Ohta
,
J. Appl. Phys.
81
,
2042
(
1997
).
8.
J.
Zheng
,
C.-H.
Lin
, and
C. H.
Kuo
,
J. Appl. Phys.
82
,
792
(
1997
).
9.
D. T. F.
Marple
,
J. Appl. Phys.
35
,
1241
(
1964
).
10.
H. C.
Casey
, Jr.
,
D. D.
Sell
, and
M. B.
Panish
,
Appl. Phys. Lett.
24
,
63
(
1974
).
11.
D. E.
Aspnes
,
S. M.
Kelso
,
R. A.
Logan
, and
R.
Bhat
,
J. Appl. Phys.
60
,
754
(
1986
).
12.
R. E.
Fern
and
A.
Onton
,
J. Appl. Phys.
42
,
3499
(
1971
).
13.
J. P.
van der Ziel
and
A. C.
Gossard
,
J. Appl. Phys.
48
,
3018
(
1977
).
14.
G. J.
Sonek
,
J. M.
Ballantyne
,
Y. J.
Chen
,
G. M.
Carter
,
S. W.
Brown
,
E. S.
Koteles
, and
J. P.
Salerno
,
IEEE J. Quantum Electron.
QE-22
,
1015
(
1986
).
15.
R. G.
Kaufmann
,
G. R.
Hulse
,
D. J.
Vezzetti
,
A. L.
Moretti
,
K. A.
Stair
,
G. P.
Devane
, and
T. E.
Bird
,
J. Appl. Phys.
75
,
8053
(
1994
).
16.
S. R.
Kisting
,
P. W.
Bohn
,
E.
Andideh
,
I.
Adesida
,
B. T.
Cunningham
,
G. E.
Stillman
, and
T. D.
Harris
,
Appl. Phys. Lett.
57
,
1328
(
1990
).
17.
F.
Vasey
,
J. M.
Stauffer
,
Y.
Oppliger
, and
F. K.
Reinhart
,
Appl. Opt.
30
,
3897
(
1991
).
18.
P. M.
Martin
,
E. M.
Skuori
,
L.
Chusseau
, and
C.
Alibert
,
Appl. Phys. Lett.
67
,
881
(
1995
).
19.
L.
Chusseau
,
P.
Martin
,
C.
Brasseur
,
C.
Alibert
,
P.
Hervé
,
P.
Arguel
, and
F.
Lozes-Dupuy
,
Appl. Phys. Lett.
69
,
3054
(
1996
).
20.
U.
Marti
,
M.
Proctor
,
D.
Martin
,
F.
Morier-Genoud
,
B.
Senior
, and
F. K.
Reinhart
,
Microelectron. Eng.
13
,
391
(
1991
).
21.
C. Gourgon, F. Filipowitz, J. Robaday, D. Martin, Y. Magnenat, P. C. Silva, F. Bobard, and F. K. Reinhart, presented at the 6th International Symposium on Nanostructures: Physics and Technology, St. Petersburg, Russia, June 22–26, 1998, unpublished.
22.
R. A.
Logan
and
F. K.
Reinhart
,
J. Appl. Phys.
44
,
4172
(
1973
).
23.
G. C.
DeSalvo
,
W. F.
Tseng
, and
J.
Comas
,
J. Electrochem. Soc.
139
,
831
(
1992
).
24.
C.
Bassignana
,
D. A.
Macquistain
,
R. W.
Streater
,
G. C.
Hillier
,
R.
Packwood
, and
V.
Moore
,
J. Cryst. Growth
172
,
25
(
1997
).
25.
S. Gehrsitz, H. Sigg, N. Herres, and F. K. Reinhart, Proceedings of the 24th International Conference on the Physics of Semiconductors, Jerusalem, Aug. 2–7, 1998, edited by D. Gershoni (World Scientific, Singapore, 1999), Compact Disk.
26.
S.
Gehrsitz
,
H.
Sigg
,
N.
Herres
,
K.
Köhler
,
K.
Bachem
, and
F. K.
Reinhart
,
Phys. Rev. B
60
,
11601
(
1999
).
27.
C.
Bosio
,
J. L.
Staehli
,
M.
Guzzi
,
G.
Burri
, and
R. A.
Logan
,
Phys. Rev. B
38
,
3263
(
1988
).
28.
D. F.
Nelson
and
E. H.
Turner
,
J. Appl. Phys.
39
,
3337
(
1968
).
29.
C.
Tanguy
,
J. Appl. Phys.
80
,
4626
(
1996
).
30.
M. Proctor, thesis No. 1133, Swiss Federal Institute of Technology, Lausanne, Switzerland (1993).
31.
M. Cardona, Proceedings International Conference, Semiconductor Physics, Prague, 1960 (Czech. Acad. Sci., Prague, and Academic, New York, 1961), p. 388.
32.
Dual fiberoptic spectrometer from Ocean Optics, Inc., model SD2000, equipped with a 600 lines/mm blazed grating and a 2048 pixel CCD array.
33.
J. S.
Blakemore
,
J. Appl. Phys.
53
,
R123
(
1982
).
34.
S. Adachi, in Properties of Gallium Arsenide, 3nd ed., edited by M. R. Brozel and G. E. Stillman (Inspec IEE, London, 1996), Chap. 1.6, p. 23.
35.
M.
Bertolotti
,
V.
Bogdanov
,
A.
Ferrari
,
A.
Jascow
,
N.
Nazorova
,
A.
Pikhtin
, and
L.
Schirone
,
J. Opt. Soc. Am. B
7
,
918
(
1990
).
36.
J.
Talghader
and
J. S.
Smith
,
Appl. Phys. Lett.
66
,
335
(
1995
).
37.
H. G.
Grimmeis
and
B.
Monemar
,
Phys. Status Solidi A
5
,
109
(
1971
).
38.
F. K.
Reinhart
and
R. A.
Logan
,
J. Appl. Phys.
44
,
3171
(
1973
).
39.
J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1989).
40.
J. E.
Raynolds
,
Z. H.
Levine
, and
J. W.
Wilkins
,
Phys. Rev. B
51
,
10477
(
1995
).
41.
S.
Adachi
and
K.
Oe
,
J. Appl. Phys.
54
,
6620
(
1983
).
42.
S.
Adachi
,
J. Appl. Phys.
58
,
R1
(
1985
).
43.
C. W.
Higginbotham
,
M.
Cardona
, and
F. H.
Pollak
,
Phys. Rev.
184
,
821
(
1969
).
44.
D. B.
Hall
and
C.
Yeh
,
J. Appl. Phys.
44
,
2271
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.