Hafnium and zirconium silicate (HfSixOy and ZrSixOy, respectively) gate dielectric films with metal contents ranging from ∼3 to 30 at. % Hf, or 2 to 27 at. % Zr (±1 at. % for Hf and Zr, respectively, within a given film), have been investigated, and films with ∼2–8 at. % Hf or Zr exhibit excellent electrical properties and high thermal stability in direct contact with Si. Capacitance–voltage measurements show an equivalent oxide thickness tox of about 18 Å (21 Å) for a 50 Å HfSixOy (50 Å ZrSixOy) film deposited directly on a Si substrate. Current–voltage measurements show for the same films a leakage current of less than 2×10−6A/cm2 at 1.0 V bias. Hysteresis in these films is measured to be less than 10 mV, the breakdown field is measured to be EBD∼10 MV/cm, and the midgap interface state density is estimated to be Dit∼1–5×1011cm−2 eV−1. Au electrodes produce excellent electrical properties, while Al electrodes produce very good electrical results, but also react with the silicates, creating a lower ε layer at the metal interface. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy indicate that the dielectric films are amorphous silicates, rather than crystalline or phase-separated silicide and oxide structures. TEM shows that these films remain amorphous and stable up to at least 1050 °C in direct contact with Si substrates.

1.
H. S.
Momose
,
M.
Ono
,
T.
Yoshitomi
,
T.
Ohguro
,
S.-I.
Nakamura
,
M.
Saito
, and
H.
Iwai
,
IEEE Trans. Electron Devices
43
,
1233
(
1996
).
2.
G. Timp et al., Tech. Dig. Int. Electron Devices Meet. , p. 615 (1998).
3.
J. H. Stathis and D. J. DiMaria, Tech. Dig. Int. Electron Devices Meet. , p. 167 (1998).
4.
J.
Sapjeta
,
T.
Boone
,
J. M.
Rosamilia
,
P. J.
Silverman
,
T. W.
Sorsch
,
G.
Timp
, and
B. E.
Weir
,
Mater. Res. Soc. Symp. Proc.
477
,
203
(
1997
).
5.
G. D.
Wilk
,
Y.
Wei
,
H.
Edwards
, and
R. M.
Wallace
,
Appl. Phys. Lett.
70
,
2288
(
1997
).
6.
G. D.
Wilk
,
Proc. SPIE
3212
,
42
(
1997
).
7.
G.
Lucovsky
,
A.
Banerjee
,
B.
Hinds
,
B.
Clafflin
,
K.
Koh
, and
H.
Yang
,
J. Vac. Sci. Technol. B
15
,
1074
(
1997
).
8.
G. D.
Wilk
and
B.
Brar
,
IEEE Electron Device Lett.
20
,
132
(
1999
).
9.
S. V. Hattangady, R. Kraft, D. T. Grider, M. A. Douglas, G. A. Brown, P. A. Tiner, J. W. Kuehne, P. E. Nicollian, and M. F. Pas, Tech. Dig. Int. Electron Devices Meet., p. 495 (1996).
10.
Y.
Wu
and
G.
Lucovsky
,
IEEE Electron Device Lett.
19
,
367
(
1998
).
11.
X. W. Wang, Y. Shi, and T. P. Ma, VLSI Symp. Tech. Dig. , 109 (1995).
12.
A. Chatterjee et al., Tech. Dig. Int. Electron Devices Meet., p. 777 (1998).
13.
I. C.
Kizilyalli
,
R. Y. S.
Huang
, and
P. K.
Roy
,
IEEE Electron Device Lett.
19
,
423
(
1998
).
14.
D.
Park
et al.,
IEEE Electron Device Lett.
19
,
441
(
1998
).
15.
H. F. Luan, B. Z. Wu, L. G. Kang, B. Y. Kim, R. Vrtis, D. Roberts, and D. L. Kwong, Tech. Dig. Int. Electron Devices Meet., p. 609 (1998).
16.
B. He, T. Ma, S. A. Campbell, and W. L. Gladfelter, Tech. Dig. Int. Electron Devices Meet., p. 1038 (1998).
17.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
,
Phys. Rev. Lett.
81
,
3014
(
1998
).
18.
L. Manchanda et al., Tech. Dig. Int. Electron Devices Meet., p. 605 (1998).
19.
R. B.
van Dover
and
L. F.
Schneemeyer
,
IEEE Electron Device Lett.
19
,
329
(
1998
).
20.
G. B.
Alers
,
D. J.
Werder
,
Y.
Chabal
,
H. C.
Lu
,
E. P.
Gusev
,
E.
Garfunkel
,
T.
Gustafsson
, and
R. S.
Urdahl
,
Appl. Phys. Lett.
73
,
1517
(
1998
).
21.
D. C.
Gilmer
et al.,
Chem. Vap. Deposition
4
,
9
(
1998
).
22.
T. Hori, Gate Dielectrics and MOS ULSIs, Springer Series in Electronics and Photonics, Vol. 34 (Springer, New York, 1997).
23.
M. A.
Russack
,
C. V.
Jahnes
, and
E. P.
Katz
,
J. Vac. Sci. Technol. A
7
,
1248
(
1989
).
24.
S. Roberts, J. G. Ryan, and D. W. Martin, Emerging Semiconductor Technology, ASTM STP 960, edited by D. C. Gupta and P. H. Langer (American Society for Testing Materials, Philadelphia, 1986), p. 137.
25.
(a)
M.
Balog
,
M.
Schieber
,
S.
Patai
, and
M.
Michman
,
J. Cryst. Growth
17
,
298
(
1972
);
(b)
M.
Balog
,
M.
Schieber
,
M.
Michman
, and
S.
Patai
,
Thin Solid Films
41
,
247
(
1977
);
(c)
M.
Balog
,
M.
Schieber
,
M.
Michman
, and
S.
Patai
,
Thin Solid Films
47
,
109
(
1977
);
(d)
M.
Balog
,
M.
Schieber
,
M.
Michman
, and
S.
Patai
,
J. Electrochem. Soc.
126
,
1203
(
1979
).
26.
J.
Shappir
,
A.
Anis
, and
I.
Pinsky
,
IEEE Trans. Electron Devices
ED-33
,
442
(
1986
).
27.
A.
Kumar
,
D.
Rajdev
, and
D. L.
Douglass
,
J. Am. Chem. Soc.
55
,
439
(
1972
).
28.
R.
Beyers
,
J. Appl. Phys.
56
,
147
(
1984
).
29.
K. J.
Hubbard
and
D. G.
Schlom
,
J. Mater. Res.
11
,
2757
(
1996
).
30.
S. Q.
Wang
and
J. W.
Mayer
,
J. Appl. Phys.
64
,
4711
(
1988
).
31.
I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1973).
32.
L. B. Pankratz, Thermodynamic Properties of Elements and Oxides (U.S. Dept. of Interior, Bureau of Mines Bulletin 672, U.S. Govt. Printing Office, Washington, D.C., 1982).
33.
S. P. Murarka, Silicides for VLSI Applications (Academic, New York, 1983).
34.
S.
Murtaza
,
J.
Hu
,
S.
Unnikrishnan
,
M.
Rodder
, and
I.-C.
Chen
,
Proc. SPIE
3506
,
49
(
1998
).
35.
From W. T. Adams, in Zirconium and Hafnium, a chapter from Mineral Facts and Problems (U.S. Dept. of Interior, Bureau of Mines Preprint from Bulletin 675, U.S. Govt. Printing Office, Washington, D.C., 1985), pp. 946–947. It is stated that Hf has been used in nuclear reactors as the control rod material, because it has a high thermal neutron capture cross section, and shows little decrease in capture cross section after long periods of radiation exposure. Hafnium also shows high corrosion resistance in hot water, which makes it a low-maintenance material for control rod purposes. Hafnium is therefore not a concern regarding radioactivity.
36.
W. B. Blumenthal, The Chemical Behavior of Zirconium (van Nostrand, Princeton, 1958), pp. 201–219.
37.
L. Bragg, G. F. Claringbull, and W. H. Taylor, Crystal Structures of Minerals (Cornell University Press, Ithaca, 1965), p. 185.
38.
P. J.
Harrop
and
D. S.
Campbell
,
Thin Solid Films
2
,
273
(
1968
).
39.
G. D.
Wilk
and
R. M.
Wallace
,
Appl. Phys. Lett.
74
,
2854
(
1999
).
40.
G. D. Wilk and R. M. Wallace (to be published).
41.
National Institute of Standards and Technology database.
42.
Z.
Lu
,
J. P.
McCaffrey
,
B.
Brar
,
G. D.
Wilk
,
R. M.
Wallace
,
L. C.
Feldman
, and
S. P.
Tay
,
Appl. Phys. Lett.
71
,
2764
(
1997
).
43.
Based on C=εε0A/t for a parallel plate capacitor, where ε=relative dielectric constant, ε0=8.85×10−14F/cm,A=capacitor area, and t=electrical dielectric thickness. Thus tox=3.9ε0(A/Cmax), and C/A=34.5 fFm2 corresponds to tox=10 Å.
44.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
45.
B.
Brar
,
G. D.
Wilk
, and
A. C.
Seabaugh
,
Appl. Phys. Lett.
69
,
2728
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.