The nonlinear electromechanical behavior of cantilevered piezoelectric ceramic bimorph, unimorph, and reduced and internally biased oxide wafer actuators is studied in a wide electric field and frequency range. It is found that under quasistatic condition, linear relationships between actuator tip displacement-electric field, and blocking force-electric field are only valid under weak field driving. With increasing the driving field, electromechanical nonlinearity begins to contribute significantly to the actuator performance because of ferroelectric hysteresis behavior associated with piezoelectric lead zirconate titanate (PZT)-type ceramic materials. The bending resonance frequencies of all these actuators vary with the magnitude of the electric field. The decrease of resonance frequency with electric field is explained by the increase of elastic compliance of PZT ceramic due to elastic nonlinearity. Mechanical quality factors of the actuators also depend on the magnitude of electric field strength. No significant temperature increase is observed when actuators are driven near resonance frequency under high electric field.

1.
R. E.
Newnham
and
G. R.
Ruschau
,
J. Am. Ceram. Soc.
74
,
463
(
1991
).
2.
R. E. Newnham, Q. C. Xu, and S. Yoshikawa, US Patent No. 999,819 (12 March 1991).
3.
H. B.
Strock
,
Am. Ceram. Soc. Bull.
75
,
71
(
1996
).
4.
H. Hui-xiong Law, a Ph.D. thesis, Monash University, Australia, 1994.
5.
T.
Bailey
and
J. E.
Hubbard
,
AIAA J. Guid. Control Dynamics
6
,
606
(
1985
).
6.
H. S. Tzou, G. C. Wan, and C. I. Tseng, IEEE International Conference on Robotics and Automation, 14–19 May 1989 Scottsdale, AZ, (unpublished), pp. 1716–1721.
7.
E.
Crawley
and
J.
de Luis
,
AIAA J.
25
,
1373
(
1985
).
8.
D. J. Taylor, Ph.D. thesis, The Pennsylvania State University, 1992.
9.
A. Dogan, Ph.D. thesis, The Pennsylvania State University, 1994.
10.
K. Uchino, Piezoelectric Actuator and Ultrasonic Motors (Kluwer Academic, Boston, MA, 1996).
11.
B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971).
12.
S.
Takahashi
,
Jpn. J. Appl. Phys.
24
,
41
(
1985
).
13.
B.
Xu
,
Q. M.
Zhang
,
V. D.
Kugel
, and
L. E.
Cross
,
Proc. SPIE
271
,
388
(
1996
).
14.
Q.-M. Wang and L. E. Cross, Presented at the 98th Annual Meeting of the American Ceramic Society, Indianapolis, IN, 1996 (unpublished).
15.
J. G.
Smits
,
S. I.
Dalke
, and
T. K.
Cooney
,
Sens. Actuators A
28
,
41
(
1991a
).
16.
J. G.
Smits
and
W.
Choi
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
38
,
256
(
1991b
).
17.
M. R.
Steel
,
F.
Harrison
, and
P. G.
Harper
,
J. Phys. D: Appl. Phys.
11
,
979
(
1978
).
18.
Q.-M.
Wang
and
L. E.
Cross
,
Ferroelectrics
215
,
187
(
1998
).
19.
G. H.
Haertling
,
Am. Ceram. Soc. Bull.
73
,
93
(
1994a
).
20.
G. H.
Haertling
,
Ferroelectrics
154
,
101
(
1994b
).
21.
Q.-M.
Wang
and
L. E.
Cross
,
J. Appl. Phys.
83
,
5358
(
1998
).
22.
Q.-M.
Wang
and
L. E.
Cross
,
J. Am. Ceram. Soc.
82
,
103
(
1999
).
23.
H.
Beige
and
G.
Schmidt
,
Ferroelectrics
41
,
39
(
1982
).
24.
S.
Li
,
W.
Cao
, and
L. E.
Cross
,
J. Appl. Phys.
69
,
7219
(
1991
).
25.
M. D.
Bryant
and
R. F.
Keltie
,
Sens. Actuators
9
,
95
(
1986
).
26.
M. D.
Bryant
and
R. F.
Keltie
,
Sens. Actuators
9
,
105
(
1986
).
27.
Q.-M.
Wang
,
X.
Du
,
B.
Xu
, and
L. E.
Cross
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
638
(
1999
).
28.
J.
Zheng
,
S.
Takahashi
,
S.
Yoshikawa
, and
K.
Uchino
,
J. Am. Ceram. Soc.
79
,
3193
(
1996
).
29.
S.
Hirose
,
S.
Takahashi
,
K.
Uchino
,
M.
Aoyagi
, and
Y.
Tomikawa
,
Mater. Res. Soc. Symp. Proc.
360
,
15
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.