The influence of oxidative and reductive treatments of indium–tin–oxide (ITO) on the performance of electroluminescent devices is presented. The improvement in device performance is correlated with the surface chemical composition and work function. The work function is shown to be largely determined by the surface oxygen concentration. Oxygen-glow discharge or ultraviolet–ozone treatments increase the surface oxygen concentration and work function in a strongly correlated manner. High temperature, vacuum annealing reduces both the surface oxygen and work function. With oxidation the occupied, density of states (DOS) at the Fermi level is also greatly reduced. This process is reversible by vacuum annealing and it appears that the oxygen concentration, work function, and DOS can be cycled by repeated oxygen treatments and annealing. These observations are interpreted in terms of the well-known, bulk properties of ITO.

1.
S. A.
Van Slyke
,
C. H.
Chen
, and
C. W.
Tang
,
Appl. Phys. Lett.
69
,
2160
(
1996
).
2.
L. S.
Hung
,
C. W.
Tang
, and
M. G.
Mason
,
Appl. Phys. Lett.
70
,
152
(
1997
).
3.
J.
Shi
and
C. W.
Tang
,
Appl. Phys. Lett.
70
,
1665
(
1997
).
4.
S. A.
Van Slyke
,
C. H.
Chen
, and
C. W.
Tang
,
Appl. Phys. Lett.
69
,
2160
(
1996
).
5.
A. J.
Heeger
,
I. D.
Parker
, and
Y.
Yang
,
Synth. Met.
67
,
23
(
1994
).
6.
S. A.
Carter
,
M.
Angelopoulos
,
S.
Karg
,
P. J.
Brock
, and
J. C.
Scott
,
Appl. Phys. Lett.
70
,
2067
(
1997
).
7.
J. S.
Kim
,
M.
Granström
,
R. H.
Friend
,
N.
Johansson
,
W. R.
Salaneck
,
R.
Daik
,
W. J.
Feast
, and
F.
Cacialli
,
J. Appl. Phys.
84
,
6859
(
1998
).
8.
A.
Gyoutpku
,
S.
Hara
,
T.
Komatsu
,
M.
Shirinashihama
,
H.
Iwanaga
, and
K.
Sakanoue
,
Synth. Met.
91
,
73
(
1997
).
9.
C. C.
Wu
,
C. I.
Wu
,
J. C.
Sturm
, and
A.
Kahn
,
Appl. Phys. Lett.
70
,
1348
(
1997
).
10.
C. S. Fadley, in Electron Spectroscopy: Theory, Techniques and Applications, edited by C. R. Brundel and A. D. Baker (Academic, New York, 1978), Vol. 2.
11.
Y.
Park
,
V.
Choong
,
Y.
Gao
,
B. R.
Hsieh
, and
C. W.
Tang
,
Appl. Phys. Lett.
68
,
2699
(
1996
).
12.
K.
Seki
,
T.
Tani
, and
H.
Ishii
,
Thin Solid Films
273
,
20
(
1996
).
13.
S. T.
Lee
,
X. Y.
Hou
,
M. G.
Mason
, and
C. W.
Tang
,
Appl. Phys. Lett.
72
,
1593
(
1998
).
14.
J. Tersoff, in Heterojunction Band Discontinuities, edited by F. Capasso and G. Margaritondo (North-Holland, Amsterdam, 1987), p. 3.
15.
I. D.
Parker
,
J. Appl. Phys.
75
,
1656
(
1994
).
16.
E. Forsythe, T. Le, F. Nüesch, and Y. Gao (private communication, 1998).
17.
See, for example; J. T. Yates, N. E. Erickson, S. D. Worley, and T. E. Madey, in The Physical Basis for Heterogeneous Catalysis, edited by E. Drauglis and R. I. Jaffee (Planum, New York, 1975), p. 75.
18.
C. H. L. Weijtens, thesis, Technische Universiteit Eindhoven, Einhoven, 1990, and references therein.
19.
M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals (Oxford University Press, New York, 1982);
G. M.
Delacote
,
J. P.
Fillard
, and
F. J.
Marco
,
Solid State Commun.
2
,
373
(
1964
).
20.
D. H.
Rich
,
A.
Samsavar
,
T.
Miller
,
F. M.
Leibsle
, and
T.-C.
Chang
,
Phys. Rev. B
40
,
3469
(
1989
).
21.
D. E.
Eastman
,
P.
Heimann
,
F. J.
Himpsel
, and
B.
Reihl
,
Phys. Rev. B
24
,
3647
(
1981
).
22.
I.
Hamberg
and
C. G.
Granqvist
,
J. Appl. Phys.
60
,
R123
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.