When synchrotron radiation is used as an excitation source, the total reflection x-ray fluorescence analysis of surface contamination on silicon wafer has an extremely low background intensity that determines the minimum detection limit. In this article, the background spectrum originating from the photoelectron bremsstrahlung is calculated using the Monte Carlo method. The doubly differential electron bremsstrahlung cross sections obtained from the Born approximation modified by the Elwert factor and with the use of the form factor approach for screening are used instead of empirical formulas. In addition to the bremsstrahlung spectrum produced from the silicon wafer, the bremsstrahlung intensity that photoelectrons, which escape from the silicon wafer, produce in the filter attached to the detector is also calculated in accordance with the usual synchrotron radiation excited total reflection x-ray fluorescence experimental conditions. The calculated photoelectron bremsstrahlung spectra are compared with experimental results and the conditions for a lower minimum detection limit are discussed.

1.
P.
Wobrauschek
,
R.
Görgl
,
P.
Kregsamer
,
Ch.
Streli
,
S.
Pahlke
,
L.
Fabry
,
M.
Haller
,
A.
Knöchel
, and
M.
Radtke
,
Spectrochim Acta B
52
,
901
(
1997
).
2.
A. C.
Diebold
,
J. Vac. Sci. Technol. A
14
,
1919
(
1996
).
3.
M. A.
Lavobie
,
E. D.
Adams
, and
G. L.
Miles
,
J. Vac. Sci. Technol. A
14
,
1924
(
1996
).
4.
Y.
Mori
,
K.
Kubota
,
K.
Shimanoe
, and
T.
Sakon
,
Anal. Sci.
14
,
275
(
1998
).
5.
P.
Pianetta
et al.,
Rev. Sci. Instrum.
66
,
1293
(
1995
).
6.
R.
Görgl
,
P.
Wobrauschek
,
P.
Kregsamer
,
Ch.
Streli
,
M.
Haller
,
A.
Knöchel
, and
M.
Radtke
,
X-Ray Spectrom.
26
,
189
(
1997
).
7.
M.
Funabashi
,
T.
Utaka
, and
T.
Arai
,
Spectrochim. Acta B
52
,
887
(
1997
).
8.
L. B.
Rees
,
D. J.
Whalen
,
M. W.
Hill
, and
N. F.
Mangelson
,
Nucl. Instrum. Methods Phys. Res. B
75
,
77
(
1993
).
9.
Z. -J.
Ding
,
R.
Shimizu
, and
K.
Obori
,
J. Appl. Phys.
76
,
7180
(
1994
).
10.
J. E.
Miraglia
,
Phys. Rev. A
39
,
2908
(
1989
).
11.
K.
Ishii
and
S.
Morita
,
Nucl. Instrum. Methods Phys. Res. B
34
,
209
(
1988
).
12.
N.
Takaura
,
S.
Brennan
,
P.
Pianetta
,
S. S.
Laderman
,
A.
Ficher-Colbrie
,
J. B.
Kortright
,
D. C.
Wherry
,
K.
Miyazaki
, and
A.
Shimazaki
,
Adv. X-Ray Chem. Anal., Jpn.
26s
,
113
(
1995
).
13.
R. Klockenkämper, Total-Reflection X-ray Fluorescence Analysis (Wiley, New York, 1997).
14.
W. Heitler, The Quantum Theory of Radiation (Dover, New York, 1984).
15.
R. H. Pratt and I. J. Feng, in Atomic Inner-Shell Physics, edited by B. Crasemann (Plenum, New York, 1985), Chap. 12.
16.
H. K.
Tseng
,
R. H.
Pratt
, and
C. M.
Lee
,
Phys. Rev. A
19
,
187
(
1979
).
17.
L.
Kissel
,
C. A.
Quarles
, and
R. H.
Pratt
,
At. Data Nucl. Data Tables
28
,
381
(
1983
).
18.
E.
Acosta
,
X.
Liovet
,
E.
Coleoni
,
J. A.
Riveros
, and
F.
Salvat
,
J. Appl. Phys.
83
,
6038
(
1998
).
19.
H. W.
Koch
and
J. W.
Motz
,
Rev. Mod. Phys.
31
,
920
(
1959
).
20.
F.
Salvat
and
J.
Parellada
,
J. Phys. D
17
,
1545
(
1984
).
21.
A. V.
Masket
,
Rev. Sci. Instrum.
28
,
191
(
1957
).
This content is only available via PDF.
You do not currently have access to this content.