The channelspark, a low accelerating voltage, high current electron beam accelerator, has been used for ablation of materials applied to thin film deposition. The channelspark operates at accelerating voltages of 10 to 20 kV with ∼1500 A beam currents. The electron beam ionizes a low-pressure gas fill (10–20 mTorr Ar or N2) to compensate its own space charge, allowing ion focused transport. Ablation of TiN, Si, and fused silica has been studied through several plasma diagnostics. In addition, thin films of SiO2 have been deposited and analyzed. Strong optical emission from ionized species, persisting for several microseconds, was observed in the electron beam ablated plumes. Free electron temperatures were inferred from relative emission intensities to be between 1.1 and 1.2 eV. Dye-laser-resonance-absorption photography showed Si atom plume expansion velocities from 0.38 to 1.4 cm/μs for several pressures of Ar or N2 background gas. A complex, multilobed plume structure was also observed, yielding strong indications that an electron beam instability is occurring, which is dependent upon the conductivity of the target. Nonresonant interferometry yielded line-averaged electron densities from 1.6 to 3.7×1023m−3 near the target surface. Resonant UV interferometry performed on Si neutral atoms generated in the ablation plumes of fused silica targets measured line integrated densities of up to 1.6×1016cm−2, with the total number of ablated silicon neutrals calculated to be in the range 2.0×1015 to 5.0×1013. Electron beam deposited films of fused silica were microscopically rough, with a thickness variation of 7%. The average SiO2 deposition rate was found to be about 0.66 nm/shot. The electron beam-deposited fused silica films had accurately maintained stoichiometry. Ablated particulate had an average diameter near 60 nm, with a most probable diameter between 40 and 60 nm. For SiO2 targets, the mass of material ablated in the form of particulate made up only a few percent of the deposited film mass, the remainder being composed of atomized and ionized material.

1.
R. P.
van Ingen
,
J. Appl. Phys.
76
,
8055
(
1994
).
2.
J.
Hermann
,
C.
Boulmer-Leborgne
, and
D.
Hong
,
J. Appl. Phys.
83
,
691
(
1998
).
3.
X. T.
Wang
,
B. Y.
Man
,
G. T.
Wang
,
Z.
Zhao
,
Y.
Liao
,
B. Z.
Xu
,
Y. Y.
Xia
,
L. M.
Mei
, and
X. Y.
Hu
,
J. Appl. Phys.
80
,
1783
(
1996
).
4.
J. S.
Lash
,
R. M.
Gilgenbach
, and
H. L.
Spindler
,
J. Appl. Phys.
79
,
2287
(
1996
).
5.
R. A.
Lindley
,
R. M.
Gilgenbach
,
C. H.
Ching
,
J. S.
Lash
, and
G. L.
Doll
,
J. Appl. Phys.
76
,
5457
(
1994
).
6.
J. M.
Gonzalez
,
M. I.
Montero
,
L.
Vazquez
,
J. A.
Martin Gago
,
D.
Givord
,
C.
de Julian
, and
K.
O’Grady
,
IEEE Trans. J. Magn. Jpn.
34
,
1108
(
1998
).
7.
S.
Keitoku
and
H.
Ezumi
,
IEEE Trans. J. Magn. Jpn.
7
,
858
(
1992
).
8.
P. R.
Wilmott
,
R.
Timm
, and
J. R.
Huber
,
J. Appl. Phys.
82
,
2082
(
1997
).
9.
E. N.
Glezer
and
E.
Mazu
,
Appl. Phys. Lett.
71
,
882
(
1997
).
10.
J.
Ihlemann
,
Appl. Surf. Sci.
54
,
193
(
1992
).
11.
K.
Sugioka
,
S.
Wada
,
H.
Tashiro
,
K.
Toyoda
, and
A.
Nakamura
,
Appl. Phys. Lett.
65
,
1510
(
1994
).
12.
T. P.
Chen
,
T.-I.
Bao
, and
I.
Lin
,
Appl. Phys. Lett.
63
,
2475
(
1993
).
13.
J. T.
Dickinson
,
S. C.
Langford
,
L. C.
Jensen
,
P. A.
Eschbach
,
L. R.
Pederson
, and
D. R.
Baer
,
J. Appl. Phys.
68
,
1831
(
1990
).
14.
Z.
Ren
,
Y.
Du
,
Y.
Qiu
,
J.
Wu
,
Z.
Ying
,
X.
Xiong
, and
F.
Li
,
Phys. Rev. B
51
,
5274
(
1995
).
15.
J.
Christiansen
and
C.
Schultheiss
,
Z. Phys. A
290
,
35
(
1979
).
16.
W.
Benker
,
J.
Christiansen
,
K.
Frank
,
H.
Gundel
,
W.
Hartmann
,
T.
Redel
, and
M.
Stetter
,
IEEE Trans. Plasma Sci.
17
,
754
(
1989
).
17.
R.
Stark
,
J.
Christiansen
,
K.
Frank
,
F.
Mucke
, and
M.
Stetter
,
IEEE Trans. Plasma Sci.
23
,
258
(
1995
).
18.
S.
Christiansen
,
F.
Mucke
,
J.
Markl
,
W.
Dorsch
,
R.
Stark
,
K.
Frank
,
H. P.
Strunk
,
G.
Saemann-Ischenko
, and
J.
Christiansen
,
J. Cryst. Growth
166
,
848
(
1996
).
19.
G. Muller and C. Schultheiss, Proceedings of 10th International Conference On High Power Particle Beams, San Diego, 20–24 June 1994 (unpublished), Vol. 2, p. 833.
20.
Q. D.
Jiang
,
F. C.
Matacotta
,
M. C.
Konijnenberg
,
G.
Muller
, and
C.
Schultheiss
,
Thin Solid Films
241
,
100
(
1994
).
21.
Th.
Witke
,
A.
Lenk
,
B.
Schultrich
, and
C.
Schultheiss
,
Surf. Coat. Technol.
74
,
580
(
1995
).
22.
S. D.
Kovaleski
,
R. M.
Gilgenbach
,
L. K.
Ang
,
Y. Y.
Lau
, and
J. S.
Lash
,
Appl. Surf. Sci.
127–129
,
947
(
1998
).
23.
S. D.
Kovaleski
,
R. M.
Gilgenbach
,
L. K.
Ang
, and
Y. Y.
Lau
,
Appl. Phys. Lett.
73
,
2576
(
1998
).
24.
R. M.
Gilgenbach
,
S. D.
Kovaleski
,
J. S.
Lash
,
L. K.
Ang
, and
Y. Y.
Lau
,
IEEE Trans. Plasma Sci.
27
,
150
(
1999
).
25.
H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997).
26.
R.
Jayakumar
and
H. H.
Fleischmann
,
J. Quant. Spectrosc. Radiat. Transf.
33
,
177
(
1985
).
27.
M. L.
Brake
and
T. E.
Repetti
,
IEEE Trans. Plasma Sci.
17
,
60
(
1989
).
28.
NIST Atomic Spectra Database, March 22, 1999, National Institute of Standards and Technology, March 31, 1999, 〈http://physics.nist.gov/cgi-bin/AtData/main_asd〉.
29.
J.
Hermann
,
C.
Vivien
,
A. P.
Carricato
, and
C.
Boulmer-Leborgne
,
Appl. Surf. Sci.
127-129
,
645
(
1998
).
30.
R. M.
Gilgenbach
,
C. H.
Ching
,
J. S.
Lash
, and
R. A.
Lindley
,
Phys. Plasmas
1
,
1619
(
1994
).
31.
L. A.
Doyle
,
G. W.
Martin
,
A.
Al-Khateeb
,
I.
Weaver
,
D.
Riley
,
M. J.
Lamb
,
T.
Morrow
, and
C. L. S.
Lewis
,
Appl. Surf. Sci.
127–129
,
716
(
1998
).
32.
G. W.
Martin
,
L. A.
Doyle
,
A.
Al-Khateeb
,
I.
Weaver
,
D.
Riley
,
M. J.
Lamb
,
T.
Morrow
, and
C. L. S.
Lewis
,
Appl. Surf. Sci.
127–129
,
710
(
1998
).
33.
R. M.
Gilgenbach
and
P. L. G.
Ventzek
,
Appl. Phys. Lett.
58
,
1597
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.