Using a multiple layer optical waveguide system consisting of two vertically slab waveguides, classical Young’s fringes may be obtained in the far-field diffraction plane. In agreement with the simple theory of diffraction interference the spacing of the far-field fringes is easily observed on mm to cm dimensions without further transformation of the output light. The simple methods of fabrication and means of optical coupling should provide a readily adaptable method for examining the principles of interferometry in an integrated optical format. The structure acts to transform polarized incident plane wave input light into separate slab modes of the device which emerge as two closely spaced and coherent sources at the output. The elements required for a classical Young’s fringe demonstration are therefore all embodied in this approach. The basic concept can be applied to an optical method for sensing. In one example of this we demonstrate measurement of the phase difference induced between the upper and lower propagating modes in structures due to water vapor diffusion into the layers which are formed from hydrophilic polymers. The Young’s fringe patterns exhibit a spatial intensity distribution which is sensitive to water vapor introduced over the surface of the structure. Differences in the effective index between the modes of the two waveguides during the diffusion of the vapor causes phase shifts which result in redistribution in the fringe pattern. The anticipated limit of detection of these devices is lower than 1 ppm for water vapor.

1.
N.
Fabricus
,
G.
Gauglitz
and
J.
Ingehoff
,
Sens. Actuators B
7
,
672
(
1992
).
2.
A.
Brandenburg
,
R.
Edelhauser
, and
F.
Hutter
,
Sens. Actuators B
11
,
361
(
1993
).
3.
R. G.
Heidemann
,
R. P. H.
Kooyman
, and
J.
Greve
,
Sens. Actuators B
10
,
209
(
1993
).
4.
A.
Brandenburg
and
R.
Henninger
,
Appl. Opt.
33
,
5941
(
1994
).
5.
R.
Kherrat
,
N.
Jaffrezic-Renault
,
P.
Greco
,
H.
Helmers
,
P.
Benech
, and
R.
Rimet
,
Sens. Actuators B
37
,
7
(
1996
).
6.
X. M.
Chen
,
D. K.
Qing
,
K.
Itoh
, and
M.
Murabayashi
,
Opt. Rev.
3
,
351
(
1996
).
7.
A.
Klotze
,
A.
Brecht
, and
G.
Gauglitz
,
Sens. Actuators B
39
,
310
(
1997
).
8.
E. F.
Schipper
,
A. M.
Brugman
,
C.
Dominiguez
,
L. M.
Lechuga
,
R. P. H.
Kooyman
, and
J.
Greve
,
Sens. Actuators B
40
,
147
(
1997
).
9.
B. F.
Schneider
,
J. G.
Edwards
, and
N. F.
Hartman
,
Clin. Chem.
43
,
1757
(
1997
).
10.
K. H.
Kim
,
H.
Minamitani
,
H.
Hisamoto
,
K.
Suzuki
, and
S. W.
Kang
,
Anal. Chim. Acta
434
,
199
(
1997
).
11.
W.
Lukosz
and
C. H.
Stamm
,
Sens. Actuators A
25–27
,
185
(
1991
).
12.
R. E.
Kunz
,
C. L.
Du
,
J.
Edlinger
,
H. K.
Pulker
, and
M.
Siefert
,
Sens. Actuators A
25–27
,
155
(
1991
).
13.
J. M.
McKelvey
and
H. E.
Hoelscher
,
Anal. Chem.
29
,
123
(
1957
).
14.
Analight EVA/500 vapor detection system (Farfield Sensors Ltd.).
15.
W.
Lukosz
,
Sens. Actuators B
29
,
37
(
1995
).
16.
International Encyclopaedia of Heat and Mass Transfer, edited by G. F. Hewitt, G. L. Shives, and Y. V. Polezhaev (Chemical Rubber, New York, 1997).
17.
N. J. Freeman and G. H. Cross, Int. Patent No. 98/22807 (28 May 1998).
This content is only available via PDF.
You do not currently have access to this content.