Using a multiple layer optical waveguide system consisting of two vertically slab waveguides, classical Young’s fringes may be obtained in the far-field diffraction plane. In agreement with the simple theory of diffraction interference the spacing of the far-field fringes is easily observed on mm to cm dimensions without further transformation of the output light. The simple methods of fabrication and means of optical coupling should provide a readily adaptable method for examining the principles of interferometry in an integrated optical format. The structure acts to transform polarized incident plane wave input light into separate slab modes of the device which emerge as two closely spaced and coherent sources at the output. The elements required for a classical Young’s fringe demonstration are therefore all embodied in this approach. The basic concept can be applied to an optical method for sensing. In one example of this we demonstrate measurement of the phase difference induced between the upper and lower propagating modes in structures due to water vapor diffusion into the layers which are formed from hydrophilic polymers. The Young’s fringe patterns exhibit a spatial intensity distribution which is sensitive to water vapor introduced over the surface of the structure. Differences in the effective index between the modes of the two waveguides during the diffusion of the vapor causes phase shifts which result in redistribution in the fringe pattern. The anticipated limit of detection of these devices is lower than 1 ppm for water vapor.
Skip Nav Destination
Article navigation
1 December 1999
Research Article|
December 01 1999
Young’s fringes from vertically integrated slab waveguides: Applications to humidity sensing
Graham H. Cross;
Graham H. Cross
Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom
Search for other works by this author on:
Yitao Ren;
Yitao Ren
Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom
Search for other works by this author on:
Neville J. Freeman
Neville J. Freeman
Farfield Sensors Limited, Unit 51, Salford University Business Park, Leslie Hough Way, Salford, Greater Manchester M6 6AJ, United Kingdom
Search for other works by this author on:
J. Appl. Phys. 86, 6483–6488 (1999)
Article history
Received:
December 17 1998
Accepted:
August 26 1999
Citation
Graham H. Cross, Yitao Ren, Neville J. Freeman; Young’s fringes from vertically integrated slab waveguides: Applications to humidity sensing. J. Appl. Phys. 1 December 1999; 86 (11): 6483–6488. https://doi.org/10.1063/1.371712
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Celebrating notable advances in compound semiconductors: A tribute to Dr. Wladyslaw Walukiewicz
Kirstin Alberi, Junqiao Wu, et al.
GaN-based power devices: Physics, reliability, and perspectives
Matteo Meneghini, Carlo De Santi, et al.