La0.7Ce0.3MnO3 is a relatively new addition to the family of colossal magnetoresistive manganites, in which the cerium ion is believed to be in the Ce4+ state. In this article, we report the magnetotransport properties of laser ablated La0.7Ce0.3MnO3 films on LaAlO3, and the effect of varying the ambient oxygen pressure during growth and the film thickness. We observe that the transport and magnetic properties of the film depend on the oxygen pressure, surface morphology, film thickness, and epitaxial strain. The films were characterized by x-ray diffraction using a four-circle goniometer. We observe an increase in the metal-insulator transition temperature with decreasing oxygen pressure. This is in direct contrast to the oxygen pressure dependence of La0.7Ca0.3MnO3 films and suggests the electron doped nature of the La0.7Ce0.3MnO3 system. With decreasing film thickness we observe an increase in the metal-insulator transition temperature. This is associated with a compression of the unit cell in the a-b plane due to epitaxial strain. On codoping with 50% Ca at the Ce site, the system (La0.7Ca0.15Ce0.15MnO3) is driven into an insulating state suggesting that the electrons generated by Ce4+ are compensated by the holes generated by Ca2+, thus making the average valence at the rare-earth site 3+ as in the parent material LaMnO3.

1.
J.
Zaanen
,
G. A.
Sawatzky
, and
J. W.
Allen
,
Phys. Rev. Lett.
55
,
418
(
1985
).
2.
C.
Zener
,
Phys. Rev.
82
,
403
(
1951
).
3.
P. W.
Anderson
and
H.
Hasegawa
,
Phys. Rev.
100
,
675
(
1955
).
4.
S.
Das
and
P.
Mandal
,
Indian J. Phys.
71
,
231
(
1997
).
5.
S.
Das
and
P.
Mandal
,
Z. Phys. B: Condens. Matter
104
,
7
(
1997
).
6.
P.
Mandal
and
S.
Das
,
Phys. Rev. B
56
,
15073
(
1997
).
7.
P.
Raychaudhuri
,
C.
Mitra
,
A.
Paramekanti
,
R.
Pinto
,
A. K.
Nigam
, and
S. K.
Dhar
,
J. Phys.: Condens. Matter
10
,
L191
(
1998
).
8.
P.
Raychaudhuri
,
A. K.
Nigam
,
C.
Mitra
,
S. K.
Dhar
, and
R.
Pinto
,
Physica B
259
,
835
(
1999
).
9.
J. H.
Kuo
,
H. U.
Anderson
, and
D. M.
Sparlin
,
J. Solid State Chem.
83
,
52
(
1989
).
10.
M.
Hervieu
,
R.
Mahesh
,
N.
Rangavittal
, and
C. N. R.
Rao
,
Eur. J. Solid State Inorg. Chem.
32
,
79
(
1995
).
11.
J. A. M.
van Roosmalen
and
E. H. P.
Cordfunke
,
J. Solid State Chem.
110
,
100
(
1994
).
12.
J.
Töpfer
and
J. B.
Goodenough
,
J. Solid State Chem.
130
,
117
(
1997
).
13.
A.
Goyal
,
M.
Rajeswari
,
R.
Shreekala
,
S. E.
Lofland
,
S. M.
Bhagat
,
T.
Boettcher
,
C.
Kwon
,
R.
Ramesh
, and
T.
Venkatesan
,
Appl. Phys. Lett.
71
,
2535
(
1997
).
14.
M.
Rajeswari
,
C. H.
Chen
,
A.
Goyal
,
C.
Kwon
,
M. C.
Robson
,
R.
Ramesh
,
T.
Venkatesan
, and
S.
Lakeou
,
Appl. Phys. Lett.
68
,
3555
(
1996
).
15.
S. Das, P. Mandal, R. Rawat, and I. Das (unpublished).
16.
P. G.
Radaelli
,
G.
Iannone
,
M.
Marezio
,
H. Y.
Hwang
,
S-W.
Cheong
,
J. D.
Jorgensen
, and
D. N.
Argyriou
,
Phys. Rev. B
56
,
8265
(
1997
).
17.
R. A.
Rao
,
D.
Lavric
,
T. K.
Nath
,
C. B.
Eom
,
L.
Wu
, and
F.
Tsui
,
Appl. Phys. Lett.
73
,
3294
(
1998
).
18.
M. G.
Blamire
,
B.-S.
Teo
,
J. H.
Durrell
,
N. D.
Mathur
,
Z. H.
Barber
,
J. L.
McManus Driscoll
,
L. F.
Cohen
, and
J. E.
Evetts
,
J. Magn. Magn. Mater.
191
,
359
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.