The field-effect passivation of the interface of thermal oxides on silicon is experimentally investigated by depositing corona charges on the oxide of solar cells and of lifetime test structures. The open circuit voltage of solar cells with interdigitated rear contacts can be increased by +12 mV or decreased by −34 mV, respectively, by depositing positive or negative corona charges on top of the front oxide. The resulting effective surface recombination velocity, Seff, is determined on carrier lifetime test structures for different injection levels and charge densities using microwave-detected photoconductance decay and a new expression for the Auger-limited bulk lifetime. Seff can be varied between 24 cm/s and 538 cm/s on a 1 Ω cm p-type wafer with a thermal oxide of 105 nm thickness. The measurements are compared with theoretical predictions of an analytical model for the calculation of the surface recombination. Measured values for the capture cross sections and interface trap densities are used for the calculation. The model predicts an optimum passivation for strong positive compared to strong negative charge densities. This is due to the asymmetry of the capture cross sections for electrons and holes. This prediction is in very good agreement with the measured Seff values. However, the predicted Seff values of well below 1 cm/s for 1 Ω cm p-type silicon cannot be achieved in the experiment. This discrepancy can be explained by an inhomogeneous charge distribution resulting in potential fluctuations and additional loss currents. With a new extended analytical model for the calculation of Seff the measured Seff values can be described quantitatively.

1.
W. D.
Eades
and
R. M.
Swanson
,
J. Appl. Phys.
58
,
4267
(
1985
).
2.
R. B. M.
Girisch
,
R. P.
Mertens
, and
R. F.
de Keersmaecker
,
IEEE Trans. Electron Devices
35
,
203
(
1988
).
3.
A. G.
Aberle
,
S.
Glunz
, and
W.
Warta
,
J. Appl. Phys.
71
,
4422
(
1992
).
4.
A. G.
Aberle
,
S.
Glunz
, and
W.
Warta
,
Sol. Energy Mater. Sol. Cells
29
,
175
(
1993
).
5.
J. Knobloch, A. Aberle, W. Warta, and B. Voss, Proceedings of the 8th European Communities Photovoltaic Solar Energy Conference, Florence (Kluwer Academic, Dordrecht, 1988), p. 1165.
6.
A. G.
Aberle
,
S. W.
Glunz
,
A. W.
Stephens
, and
M. A.
Green
,
Prog. Photovoltaics
2
,
265
(
1994
).
7.
S. W.
Glunz
,
A. B.
Sproul
,
W.
Warta
, and
W.
Wettling
,
J. Appl. Phys.
75
,
1611
(
1994
).
8.
H.
Ohtsuka
,
T.
Uematsu
, and
T.
Warabisako
,
Sol. Energy Mater. Sol. Cells
44
,
79
(
1996
).
9.
Y. Bai, J. E. Philips, and A. M. Barnett, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Washington (IEEE, New York, 1995), p. 425.
10.
G. M. Sessler, Electrets, Topics in Applied Physics Vol. 33 (Springer, Berlin, 1980), p. 30.
11.
P.
Günther
and
Z.
Xia
,
J. Appl. Phys.
74
,
7269
(
1993
).
12.
A. Beyer, M. Rennau, and G. Ebest, Proceedings of the 13th European Communities Photovoltaic Solar Energy Conference, Nice (Stephens, Bedford, 1995), p. 1254.
13.
P. Günther and A. Mathewson, Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, Hawaii (IEEE, New York, 1994), p. 1523.
14.
P. Wawer, H. Fröhlich, and H. G. Wagemann, Proceedings of the 14th European Communities Photovoltaic Solar Energy Conference, Barcelona (Stephens, Bedford, 1997), p. 2446.
15.
M. Schöfthaler, R. Brendel, G. Langguth, and J. H. Werner, in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, Hawaii (IEEE, New York, 1994), p. 1509.
16.
M. M.
Shahin
,
J. Chem. Phys.
45
,
2600
(
1966
).
17.
M. M.
Shahin
,
Appl. Opt.
3
,
106
(
1969
).
18.
Lord
Kelvin
,
Philos. Mag.
46
,
82
(
1898
).
19.
S. M. Sze, Physics of Semiconductor Devices (Wiley & Sons, New York, 1981), p. 369.
20.
S. W.
Glunz
,
J.
Schumacher
,
W.
Warta
,
J.
Knobloch
, and
W.
Wettling
,
Prog. Photovoltaics
4
,
415
(
1996
).
21.
R.
Brendel
,
Appl. Phys. A: Mater. Sci. Process.
60
,
523
(
1995
).
22.
A. G.
Aberle
,
J.
Schmidt
, and
R.
Brendel
,
J. Appl. Phys.
79
,
1491
(
1996
).
23.
A.
Hangleiter
and
R.
Häcker
,
Phys. Rev. Lett.
65
,
215
(
1990
).
24.
P.
Altermatt
,
J.
Schmidt
,
G.
Heiser
, and
A. G.
Aberle
,
J. Appl. Phys.
82
,
4938
(
1997
).
25.
J.
Dziewior
and
W.
Schmidt
,
Appl. Phys. Lett.
31
,
346
(
1977
).
26.
R. A.
Sinton
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
34
,
1380
(
1987
).
27.
S. Rein et al. (unpublished).
28.
J. Knobloch, A. Noel, E. Schaeffer, U. Schubert, F. J. Kamerewerd, S. Klussmann, and W. Wettling, Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Louisville (IEEE, New York, 1993), p. 271.
29.
S. W. Glunz, J. Knobloch, C. Hebling, and W. Wettling, Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim (IEEE, New York, 1997), p. 231.
30.
ISE Integrated Systems Engineering AG, Zurich, Switzerland, DESSIS 4.0 (1997).
31.
J. Dicker, J. O. Schumacher, S. W. Glunz, and W. Warta, Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion, Vienna (1998), p. 95.
32.
E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) — Physics and Technology (Wiley, New York, 1982), p. 235.
33.
P. Lölgen, Ph.D. thesis, University Utrecht, 1995.
34.
S. Glunz, Ph.D. thesis, University Freiburg, 1995.
This content is only available via PDF.
You do not currently have access to this content.