We designed and fabricated a series of micromechanical test structures for microtensile testing by anisotropically etching epitaxial silicon. Specimens were fabricated to study Young’s moduli, the uniaxial tensile strength, and the strength of T-structures which are tensile bars with an abrupt reduced cross section that have a 90° corner at the point of reduction. They are a generic mimic of actual transitions that occur in micromechanical structures due to anisotropic etching. The test structures were loaded in uniaxial tension in a piezoactuated microtensile test apparatus. The applied force and crosshead displacement were recorded and displacements in the specimen gage section were directly measured using a speckle interferometry technique. During tensile loading of the T-structures, fracture always initiates at the sharp 90° corners. This results in an interesting apparent strength scaling where the nominal strength of the structures increases as their width decreases. In order to understand the fracture initiation from the sharp 90° corners of the silicon T-structures, we carried out a complete analysis of the elastic fields at the 90° corners by coupling an asymptotic analysis (to compute the asymptotic radial and angular dependence of the elastic fields up to an arbitrary constant for each loading mode, the stress intensity), and full-field finite element calculations (to determine the magnitude of the stress intensities for specific geometries and loadings). Excellent results are obtained by using a single parameter, the critical mode I stress intensity, to correlate fracture initiation from the sharp 90° corners of the T-structures.

1.
K. E.
Petersen
and
C. R.
Guarnieri
,
J. Appl. Phys.
50
,
6761
(
1979
).
2.
K. E.
Petersen
,
IBM J. Res. Dev.
24
,
631
(
1980
).
3.
K. E.
Petersen
,
Proc. IEEE
70
,
420
(
1982
).
4.
J. N. Hobstetter, “Mechanical properties of semiconductors,” Properties of Crystalline Solids, ASTM Special Technical Publication 283 (ASTM, Philadelphia, PA, 1960), pp. 40–51.
5.
S. D. Senturia, “Can We Design Microbotic Devices Without Knowing The Mechanical Properties of Materials?,” IEEE Micro Robots and Teleoperators Workshop, Hyannis, MA, 1987.
6.
C. H. Mastrangelo and W. C. Tang “Semiconductor Sensor Technologies,” in Semiconductor Sensors, edited by S. M. Sze (Wiley, New York, 1994).
7.
W. R. Runyan, Silicon Semiconductor Technology (McGraw–Hill, New York, 1965).
8.
S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd ed. (Wiley, New York, 1994).
9.
P. Van Zant, Microchip Fabrication, 3rd ed. (McGraw–Hill, New York, 1997).
10.
S. M.
Hu
,
J. Appl. Phys.
70
,
R53
(
1991
).
11.
W.
Suwito
,
M. L.
Dunn
, and
S. J.
Cunningham
,
J. Appl. Phys.
83
,
3574
(
1998
).
12.
W. N. Sharpe, Jr., B. Yuan, R. Vaidyanathan, and R. L. Edwards, Proceedings of the International Society for Optical Engineering, Austin, TX., 1996, pp. 78–91.
13.
W. D.
Nix
,
Metall. Trans. A
20A
,
2217
(
1989
).
14.
J.-A.
Schweitz
,
MRS Bull.
XVII
,
34
(
1992
).
15.
E.
Obermeier
,
Mater. Res. Soc. Symp. Proc.
444
,
39
(
1997
).
16.
M. G.
Allen
,
M.
Mehregany
,
R. T.
Howe
, and
S. D.
Senturia
,
Appl. Phys. Lett.
51
,
241
(
1987
).
17.
L. S. Fan, R. T. Howe, and R. S. Muller, Abstract Digest, 5th International Conference on Solid-State Sensors and Actuators (Transducers 89), Montreux, Switzerland, 1989, pp. 249–250.
18.
R. T.
Howe
and
R. S.
Muller
,
J. Appl. Phys.
54
,
4674
(
1983
).
19.
T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix, “Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams,” in Thin Films: Stresses and Mechanical Properties, edited by Bravman, Nix, Barnett, and Smith (Material Research Society, Pittsburgh, PA, 1988), pp. 87–93.
20.
S.
Johansson
,
J.-A.
Schweitz
,
L.
Tenerz
, and
J.
Tiren
,
J. Appl. Phys.
63
,
4799
(
1988
).
21.
O. Tabata, K. Kawahata, S. Sugiyama, H. Inagaki, and I. Igarashi, Technical Digest of the 7th Sensor Symposium, Tokyo, Japan, 1988, pp. 173–176.
22.
O.
Tabata
,
K.
Kawahata
,
S.
Sugiyama
, and
I.
Igarashi
,
Sens. Actuators
20
,
135
(
1989
).
23.
K.
Najafi
and
K.
Suzuki
, Proc. IEEE, 96 (1989).
24.
F.
Ericson
and
J.-A.
Schweitz
,
J. Appl. Phys.
68
,
5840
(
1990
).
25.
Y. C.
Tai
and
R. S.
Muller
, Proc. IEEE MEMS (1990), pp. 147–152.
26.
C. G. Andeen and R. W. Hoffman, Probing Polymer Structures, 1977, pp. 25–33.
27.
X.
Ding
,
W. H.
Ko
, and
J. M.
Mansour
,
Sens. Actuators
A21–A23
,
866
(
1990
).
28.
D. T.
Read
and
J. W.
Dally
,
J. Mater. Res.
8
,
1542
(
1993
).
29.
D. T. Read, “Mechanical behavior of aluminum and copper thin films,” in Proceedings of the ASME Proceedings, Winter Annual Meeting, 1994.
30.
D. T.
Read
,
J. Testing Eval.
26
,
255
(
1998
).
31.
D. T.
Read
,
Meas. Sci. Technol.
9
,
676
(
1998
).
32.
W. N. Sharpe, Jr., D. A. La Van, and R. L. Edwards, Proceedings of the 9th International Conference on Solid State Sensors and Actuators (Transducers 97), Chicago, IL, 1997, pp. 607–610.
33.
W. N. Sharpe, Jr., B. Yuan, and R. L. Edwards, “Advances in tensile testing of polysilicon thin films,” in Applications of Experimental Mechanics to Electronic Packaging (ASME, New York, 1997), EEP-Vol. 22/AMD-Vol. 226, pp. 113–116.
34.
J. Dual, E. Mazza, G. Schiltges, and D. Schlums, “Mechanical properties of microstructures: Experiments and theory,” in Microlithography and Metrology in Micromachining III, edited by C. R. Friedrich and A. Umeda (SPIE, Bellingham, WA, 1997), Vol. 3225, pp. 12–22.
35.
S.
Greek
,
F.
Erickson
,
S.
Johansson
, and
J.-A.
Schweitz
,
Thin Solid Films
292
,
247
(
1997
).
36.
K. Sato, M. Shikida, T. Yoshioka, T. Ando, and T. Kawabata, Proceedings of the 9th International Conference on Solid State Sensors and Actuators (Transducers 97), Chicago, IL, 1997, pp. 595–598.
37.
S. J. Cunningham, W. Suwito, and D. T. Read, Proceedings of the 8th International Conference on Solid-State Sensors and Actuators, Transducers 95, pp. 96–99.
38.
G. L.
Pearson
,
W. T.
Read
, Jr.
, and
W. L.
Feldman
,
Acta Metall.
5
,
181
(
1957
).
39.
W. P. Mason, Physical Acoustics and the Properties of Solids, Appendix D (Van Nostrand, Princeton, NJ, 1958), pp. 355–393.
40.
M. L.
Williams
,
J. Appl. Mech.
74
,
526
(
1952
).
41.
J. P.
Dempsey
and
G. B.
Sinclair
,
J. Elast.
11
,
317
(
1981
).
42.
T. C. T. Ting, Anisotropic Elasticity: Theory and Applications (Oxford Science, 1996).
43.
D. B.
Bogy
,
J. Appl. Mech.
35
,
460
(
1968
).
44.
D. B.
Bogy
,
J. Appl. Mech.
93
,
377
(
1971
).
45.
V. L.
Hein
and
F.
Erdogan
,
Int. J. Fract.
7
,
317
(
1971
).
46.
M. C.
Kuo
and
D. B.
Bogy
,
J. Appl. Mech.
41
,
197
(
1974
).
47.
T. C. T.
Ting
and
S. C.
Chou
,
Int. J. Solids Struct.
17
,
1057
(
1981
).
48.
F.
Delale
,
Int. J. Solids Struct.
20
,
31
(
1984
).
49.
T. C. T.
Ting
,
Int. J. Solids Struct.
22
,
965
(
1986
).
50.
L.
Gu
and
T.
Belytschko
,
Int. J. Solids Struct.
31
,
865
(
1994
).
51.
S. S.
Pageau
,
P. F.
Joseph
, and
S. B.
Biggers
,
Int. J. Numer. Methods Eng.
38
,
81
(
1995
).
52.
R. H. Leicester, CSIRO Forest Products Laboratory, Div. of Building Research, 1973, Paper No. 71.
53.
P. F.
Walsh
,
Mag. Concrete Res.
28
,
37
(
1976
).
54.
B.
Gross
and
A.
Mendelson
,
Int. J. Fract. Mech.
8
,
267
(
1972
).
55.
G. B.
Sinclair
,
M.
Okajima
, and
J. H.
Griffin
,
Int. J. Numer. Methods Eng.
20
,
999
(
1984
).
56.
Z.
Knesl
,
Int. J. Fract.
48
,
R79
(
1991
).
57.
D.
Munz
and
Y. Y.
Yang
,
Int. J. Fract.
60
,
169
(
1993
).
58.
T.
Fett
,
Eng. Fract. Mech.
47
,
547
(
1994
).
59.
D.
Munz
,
M. A.
Sckuhr
, and
Y. Y.
Yang
,
J. Am. Ceram. Soc.
78
,
285
(
1995
).
60.
Y. Y.
Yang
,
D.
Munz
, and
M. A.
Sckuhr
,
Eng. Fract. Mech.
56
,
691
(
1997
).
61.
A.
Carpinteri
,
Eng. Fract. Mech.
26
,
143
(
1987
).
62.
A.
Seweryn
,
Eng. Fract. Mech.
47
,
673
(
1994
).
63.
M. L.
Dunn
,
W.
Suwito
, and
S. J.
Cunningham
,
Int. J. Solids Struct.
34
,
3873
(
1997
).
64.
M. L.
Dunn
,
W.
Suwito
,
S. J.
Cunningham
, and
C. W.
May
,
Int. J. Fract.
84
,
367
(
1997
).
65.
A. N.
Stroh
,
Philos. Mag.
3
,
625
(
1958
).
66.
P. A.
Gradin
,
J. Compos. Mater.
16
,
448
(
1982
).
67.
T.
Hattori
,
S.
Sakata
, and
G.
Murakami
,
J. Electron. Packaging
111
,
243
(
1989
).
68.
A.
Nishimura
,
I.
Hirose
, and
N.
Tanaka
,
J. Electron. Packaging
114
,
407
(
1992
).
69.
E. D.
Reedy
, Jr.
,
Eng. Fract. Mech.
38
,
575
(
1990
).
70.
E. D.
Reedy
, Jr.
,
Eng. Fract. Mech.
38
,
273
(
1991
).
71.
E. D.
Reedy
, Jr.
,
Int. J. Solids Struct.
30
,
767
(
1993
).
72.
E. D.
Reedy
, Jr.
and
T. R.
Guess
,
Int. J. Solids Struct.
30
,
2929
(
1993
).
73.
E. D.
Reedy
, Jr.
and
T. R.
Guess
,
J. Adhes. Sci. Technol.
9
,
237
(
1995
).
74.
E. D. Reedy, Jr. and T. R. Guess, Int. J. Fracture (in press).
75.
K. A.
Ingebrigtsen
and
A.
Tonning
,
Phys. Rev.
184
,
942
(
1969
).
76.
D. M.
Barnett
and
J.
Lothe
,
Phys. Norv.
7
,
13
(
1973
).
77.
K. C.
Wu
and
F. T.
Chang
,
Trans. ASME, J. Appl. Mech.
60
,
937
(
1993
).
78.
P. E. W.
Labossiere
and
M. L.
Dunn
,
Eng. Fract. Mech.
61
,
635
(
1998
).
79.
D. Broek, Elementary Engineering Fracture Mechanics, 4th rev. ed. (Martinus Nijhoff, Dordrecht, 1987).
80.
C. Y.
Hui
and
A.
Ruina
,
Int. J. Fract.
72
,
97
(
1995
).
81.
B. Lawn, Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, 1995).
82.
J. E.
Sinclair
and
B.
Lawn
,
Proc. R. Soc. London, Ser. A
329
,
83
(
1972
).
83.
C. P.
Chen
and
M. H.
Leipold
,
Am. Ceram. Soc. Bull.
59
,
469
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.