The electrical characteristics of TiSix contacts to nitrogen implanted 6H-SiC are investigated using linear transmission line method structures at temperatures up to 673 K. Nitrogen is implanted into a p-type (NA≈1×1016cm−3) 6H-SiC epilayer at 500 °C and activated at 1700 °C, resulting in an activated donor concentration of ND=5×1019cm−3 to a depth of 300 nm with a reduced electrically active surface concentration of about ND≈5×1018cm−3. Sputtered titanium silicide is used as contact metallization. Five different contact formation temperatures TA ranging from 900 to 1150 °C are applied to the samples in order to investigate the specific contact resistance ρc. Whereas an anneal of at least 950 °C is necessary to achieve an ohmic contact behavior, samples annealed at 1150 °C show specific contact resistance of 7×10−6 Ω cm2 at room temperature, which decreases monotonically to 4×10−6 Ω cm2 at 673 K. The sheet resistance Rs (resistivity ρs) of the n+-implanted layer is 521 Ω/□ (15.6×10−3 Ω cm) at 303 K. Up to 573 K, Rs declines to 354 Ω/□ (10.6×10−3 Ω cm) as the incomplete ionization of the nitrogen dopants dominates the temperature behavior. Above 573 K, the reduction of the electron mobility via phonon scattering dominates, and Rs increases to 363 Ω/□ (10.9×10−3 Ω cm) at 673 K. From the resistivity as a function of temperature, the low field mobility μ0 is 149 cm2/V s at 300 K, and the temperature exponent α=1.62 of the power law dependence can be deduced.

1.
J. B.
Casady
and
R. W.
Johnson
,
Solid-State Electron.
39
,
1409
(
1996
).
2.
R. F.
Davis
,
G.
Kelner
,
M.
Shur
,
J. W.
Palmour
, and
J. A.
Edmond
,
Proc. IEEE
79
,
677
(
1991
).
3.
L. A.
Lipkin
and
J. W.
Palmour
,
J. Electron. Mater.
25
,
909
(
1996
).
4.
S.
Yaguchi
,
T.
Kimoto
,
N.
Ohyama
, and
H.
Matsunami
,
Jpn. J. Appl. Phys., Part 1
34
,
3036
(
1995
).
5.
T.
Kimoto
,
A.
Itoh
,
H.
Matsunami
,
T.
Nakata
, and
M.
Watanabe
,
J. Electron. Mater.
25
,
879
(
1996
).
6.
J.
Crofton
,
P. A.
Barnes
,
J. R.
Williams
, and
J. A.
Edmond
,
Appl. Phys. Lett.
62
,
384
(
1993
).
7.
J.
Crofton
,
P. G.
McMullin
,
J. R.
Williams
, and
M. J.
Bozack
,
J. Appl. Phys.
77
,
1317
(
1995
).
8.
J.
Crofton
,
L. M.
Porter
, and
J. R.
Williams
,
Phys. Status Solidi B
202
,
581
(
1997
).
9.
L. M.
Porter
and
R. F.
Davis
,
Mater. Sci. Eng., B
34
,
83
(
1995
).
10.
R.
Getto
,
J.
Freytag
,
M.
Kopnarski
, and
H.
Oechsner
,
Mater. Sci. Forum
287–288
,
231
(
1998
).
11.
R. Getto, J. Freytag, M. Kopnarski, and H. Oechsner, Proceedings of the ECSCRM 98, Montpellier, 1998.
12.
S. S. Cohen and G. S. Gildenblat, VLSI Electronics 13 (Arcadamic, 1986).
13.
S.
Ahmed
,
C. J.
Barbero
, and
T. W.
Sigmon
,
J. Appl. Phys.
77
,
6194
(
1994
).
14.
J.
Crofton
,
E. D.
Luckowski
,
J. R.
Williams
,
T.
Isaacs-Smith
,
M. J.
Bozack
, and
R.
Siergiej
,
Inst. Phys. Conf. Ser.
142
,
569
(
1996
).
15.
S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
16.
Cree Research, Inc., Properties and Specifications for 6H-SiC (1998).
17.
D.
Dwight
,
M. V.
Rao
,
O. W.
Holland
,
G.
Kelner
,
P. H.
Chi
,
J.
Kretchmer
, and
M.
Ghezzo
,
J. Appl. Phys.
82
,
5327
(
1997
).
18.
T.
Kimoto
,
A.
Itoh
,
H.
Matsunami
,
T.
Nakata
, and
M.
Watanabe
,
J. Electron. Mater.
24
,
235
(
1995
).
19.
F. B.
McLean
,
C. W.
Tipton
,
J. M.
McGarrity
, and
C. J.
Scozzie
,
J. Appl. Phys.
79
,
545
(
1996
).
20.
S. T. Sheppard, V. Lauer, W. Wondrak, and E. Niemann, Proceedings of the ICSCIII-N, Stockholm, 1997, p. 1077.
21.
M.
Ruff
,
H.
Mitlehner
, and
R.
Helbig
,
IEEE Trans. Electron Devices
41
,
1040
(
1994
).
22.
T.
Troffer
,
C.
Peppermüller
,
G.
Pensl
,
K.
Rottner
, and
A.
Schöner
,
J. Appl. Phys.
80
,
3739
(
1996
).
23.
W. J.
Schaffer
,
G. H.
Negley
,
K. G.
Irvine
, and
J. W.
Palmour
,
Mater. Res. Soc. Symp. Proc.
339
,
595
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.