A model is presented for the growth and dissolution of oxygen precipitates in Czochralski silicon during heat treatment. Growth and dissolution rates are newly derived and inserted into a set of chemical rate equations and a Fokker–Planck equation. It can calculate the size distribution of the oxygen precipitates and oxygen concentration profile without calculation of the interfacial concentrations at the interface of Si matrix and precipitates. It accounts for the oxidizing ambient effect, the solubility enhancement effect of oxygen, and the surface recombination and generation of point defects. The formation of stacking faults is also taken into account. This approach allows one to calculate more accurately the residual oxygen depth profile and the density distribution of oxygen precipitates which can be measured experimentally. By comparing the simulated results with experimental ones, it is proved that this model can be used to estimate the depth profile and the defect densities under inert conditions and oxidation conditions.

1.
K.
Sumino
,
H.
Harada
, and
I.
Yonegawa
,
Jpn. J. Appl. Phys., Part 2
19
,
L49
(
1980
).
2.
T. Y.
Tan
and
W. K.
Tice
,
Philos. Mag.
34
,
615
(
1976
).
3.
M.
Vollmer
and
A.
Weber
,
Z. Phys. Chem.
119
,
277
(
1926
).
4.
R.
Becker
and
W.
Döring
,
Ann. Phys. (Leipzig)
24
,
719
(
1935
).
5.
K.
Wada
and
N.
Inoue
,
J. Cryst. Growth
71
,
111
(
1985
).
6.
F. S.
Ham
,
J. Phys. Chem. Solids
6
,
335
(
1958
).
7.
K.
Yang
,
J.
Carle
, and
R.
Kleinhenz
,
J. Appl. Phys.
62
,
4890
(
1987
).
8.
S.
Isomae
,
J. Appl. Phys.
70
,
4217
(
1991
).
9.
M. Schrems, in Oxygen in Silicon, Semiconductors and Semimetals, edited by F. Shimura (Academic, New York, 1994), Vol. 42.
10.
S.
Senkader
,
J.
Esfandyari
, and
G.
Hobler
,
J. Appl. Phys.
78
,
6469
(
1995
).
11.
D. A. Porter and K. E. Easterling, Phase Transformation in Metals and Alloys, 2nd ed. (Chapman & Hall, London, 1992), Chap. 1.
12.
D.
Turnbull
and J. C. Fischer,
J. Chem. Phys.
17
,
71
(
1949
).
13.
C. Kittel and H. Kroemer, Thermal Physics, 2nd ed. (W. H. Freeman and Company, New York, 1980), p. 407.
14.
T. R.
Waite
,
Phys. Rev.
107
,
463
(
1957
).
15.
S. M.
Hu
,
Mater. Res. Soc. Symp. Proc.
59
,
249
(
1986
).
16.
J. C.
Mikkelsen
, Jr.
,
Appl. Phys. Lett.
41
,
871
(
1992
).
17.
S. T.
Dunham
,
J. Appl. Phys.
71
,
685
(
1992
).
18.
B. E.
Deal
and
A. S.
Grove
,
J. Appl. Phys.
36
,
3770
(
1965
).
19.
G.
Schafetter
and
H. K.
Gummel
,
IEEE Trans. Electron Devices
ED-16
,
64
(
1969
).
20.
J. C.
Mikkelsen
, Jr.
,
Mater. Res. Soc. Symp. Proc.
59
,
19
(
1986
).
21.
H.
Zimmerman
and
H.
Ryssel
,
Appl. Phys. A: Solids Surf.
55
,
121
(
1992
).
22.
K.
Yusutake
,
M.
Umeno
, and
H.
Kawabe
,
Phys. Status Solidi B
83
,
207
(
1984
).
23.
TMA TSUPREM-4 User’s Manual, version 6.0, Technology Modeling Associates, Palo Alto, CA, Dec. 1993.
24.
M.
Dammann
and
H.
Baltes
,
J. Appl. Phys.
76
,
4547
(
1994
).
25.
A.
Virzi
and
M.
Porrini
,
Mater. Sci. Eng., B
17
,
196
(
1993
).
26.
S.
Messoloras
,
R. C.
Newman
,
R. J.
Stewart
, and
J. H.
Turker
,
Semicond. Sci. Technol.
2
,
14
(
1987
).
27.
H. D.
Chiou
,
Solid State Technol.
30
,
77
(
1987
).
28.
S.
Isomae
,
S.
Aoki
, and
K.
Watanabe
,
J. Appl. Phys.
55
,
817
(
1984
).
29.
J.
Esfandyari
et al.,
J. Electrochem. Soc.
143
,
995
(
1996
).
30.
K.
Hölzlein
,
G.
Pensl
, and
M.
Schulz
,
Appl. Phys. A: Solids Surf.
A34
,
155
(
1984
).
31.
A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, 1976), pp. 216–218, pp. 553–561.
32.
S. M.
Hu
,
Appl. Phys. Lett.
36
,
561
(
1980
).
33.
H.
Abe
,
I.
Suzuki
, and
H.
Koya
,
J. Electrochem. Soc.
144
,
306
(
1997
).
34.
M. Schrems et al., Semiconductor Silicon (The Electrochemical Society, New York, 1990), p. 144.
35.
E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981).
36.
F. C.
Goodrich
,
Proc. R. Soc. London, Ser. A
277
,
167
(
1964
).
This content is only available via PDF.
You do not currently have access to this content.