The electrical properties of dense nanocrystalline TiO2 ceramics with an average grain size of 35 nm were investigated by impedance spectroscopy and compared with a coarsened material with micron size grains. The nanocrystalline ceramics show an uncommon domain of ionic conductivity at high oxygen pressures and a steep increase of electronic conductivity at low oxygen pressures. These results are discussed in terms of defect chemical models. The enthalpy of reduction of the nanocrystalline TiO2 was deduced to be significantly lower than that of the coarsened material. This may be related to lower defect formation energies at interface sites.

1.
C. J.
Barbe
,
F.
Arendse
,
P.
Comte
,
M.
Jirousek
,
F.
Lenzmann
,
V.
Shklover
, and
M.
Grätzel
,
J. Am. Ceram. Soc.
80
,
3157
(
1997
).
2.
J. Y.
Ying
and
T.
Sun
,
J. Electroceram.
1
,
219
(
1997
).
3.
E. M.
Logothetis
,
Ceram. Eng. Sci. Proc.
1
,
281
(
1980
).
4.
Y.-M.
Chiang
,
E. B.
Lavik
,
I.
Kosacki
,
H. L.
Tuller
, and
J. Y.
Ying
,
Appl. Phys. Lett.
69
,
185
(
1996
).
5.
Y.-M.
Chiang
,
E. B.
Lavik
,
I.
Kosacki
,
H. L.
Tuller
, and
J. Y.
Ying
,
J. Electroceram.
1
,
7
(
1997
).
6.
Y.-M.
Chiang
,
E. B.
Lavik
, and
D. A.
Blom
,
Nanostruct. Mater.
9
,
633
(
1997
).
7.
A. P.
Alivisatos
,
Ber. Bunsenges. Phys. Chem.
101
,
1573
(
1997
).
8.
P. Knauth and H. L. Tuller, Proceedings of the U.S.–Japan Workshop, edited by H. Yanagida and H. L. Tuller (Cambridge, 1998), p. 15.
9.
O. Porat, H. L. Tuller, E. B. Lavik, and Y.-M. Chiang, in Nanophase and Nanocomposite Materials II, edited by S. Komarneni, J. Parker, and H. Wollenberger (Materials Research Society, Pittsburgh, 1997), p. 99.
10.
J. A. S.
Ikeda
and
Y.-M.
Chiang
,
J. Am. Ceram. Soc.
76
,
2437
(
1993
).
11.
J. F.
Baumard
and
E.
Tani
,
J. Chem. Phys.
67
,
857
(
1977
).
12.
D. M.
Smyth
,
Prog. Solid State Chem.
15
,
145
(
1984
).
13.
K.
Hoshino
,
N. L.
Peterson
, and
C. L.
Wiley
,
J. Phys. Chem. Solids
46
,
1397
(
1985
).
14.
M. A. Spears and H. L. Tuller (unpublished).
15.
F.
Millot
,
M.-G.
Blanchin
,
R.
Tetot
,
J.-F.
Marucco
,
B.
Poumellec
,
C.
Picard
, and
B.
Touzelin
,
Prog. Solid State Chem.
17
,
263
(
1987
).
16.
A.
Bernasik
,
M.
Rekas
,
M.
Sloma
, and
W.
Weppner
,
Solid State Ionics
72
,
12
(
1994
).
17.
W. Büchner, R. Schliebs, G. Winter, and K. H. Büchel, Industrial Inorganic Chemistry (VCH, Weinheim, 1989).
18.
S. C.
Liao
,
W. E.
Mayo
, and
K. D.
Pae
,
Acta Mater.
45
,
4027
(
1997
).
19.
J. E.
Bauerle
,
J. Phys. Chem. Solids
30
,
2657
(
1969
).
20.
I.
Kosacki
and
H.
Anderson
,
Mater. Res. Soc. Symp. Proc.
453
,
537
(
1997
).
21.
I.
Kosacki
and
H. U.
Anderson
,
Sens. Actuators B
48
,
263
(
1998
).
22.
C. D.
Terwilliger
and
Y.-M.
Chiang
,
Acta Mater.
43
,
319
(
1995
).
23.
M.
Aoki
,
Y.-M.
Chiang
,
I.
Kosacki
,
L. J.-R.
Lee
,
H.
Tuller
, and
Y.
Liu
,
J. Am. Ceram. Soc.
79
,
1169
(
1996
).
24.
R. N.
Blumenthal
,
J. C.
Kirk
, and
W. M.
Hirthe
,
J. Phys. Chem. Solids
28
,
1077
(
1967
).
25.
I.
Bransky
and
D. S.
Tannhauser
,
Solid State Commun.
7
,
245
(
1969
).
26.
J. F.
Baumard
,
D.
Panis
, and
D.
Ruffier
,
Rev. Int. Hautes Temp. Refract.
12
,
321
(
1975
).
27.
J. F.
Marucco
,
J.
Gautron
, and
P.
Lemasson
,
J. Phys. Chem. Solids
42
,
363
(
1981
).
28.
H. R. P.
Frederikse
,
J. Appl. Phys.
32
,
2211
(
1961
).
29.
H. L. Tuller, J. Claus, and T. Chen, Fourth Euro Ceramics, Vol. 5, Electroceramics, edited by G. Gusmano and E. Traversa (Faenza, 1995), p. 443.
30.
J.
Maier
,
Prog. Solid State Chem.
23
,
171
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.