The signal induced in a readout circuit connected to a pixel electrode in a semiconductor gamma-ray imaging array is calculated by solving the Laplace equation. Two approaches are presented that use Green functions in solving the boundary value problem: decomposition into basis functions, and construction of an infinite series of image charges. Another approach is developed based on the Ramo–Shockley theorem, which makes use of weighting potentials. These potentials may be readily calculated in three dimensions using a Fourier-transform propagation technique. An analytic solution is found for the special two-dimensional case of a strip detector. Experiments on CdZnTe square-pixel test structures using alpha radiation confirm the expected trends in pulse shape as a function of pixel size. Signals observed simultaneously on adjacent pixels also follow the predicted division of currents. Trends with pixel size are also confirmed in the shape of pulse-height spectra taken using a Tc99m source.

1.
H. B.
Barber
,
D. G.
Marks
,
B. A.
Apotovsky
,
F. L.
Augustine
,
H. H.
Barrett
,
J. F.
Butler
,
E. L.
Dereniak
,
F. P.
Doty
,
J. D.
Eskin
,
W. J.
Hamilton
,
K. J.
Matherson
,
J. E.
Venzon
,
J. M.
Woolfenden
, and
E. T.
Young
,
Nucl. Instrum. Methods Phys. Res. A
380
,
262
(
1996
).
2.
C. M.
Stahle
,
A.
Parsons
,
L. M.
Bartlett
,
P.
Kurczynski
,
J. F.
Krizmanic
,
L. M.
Barbier
,
S. D.
Barthelmy
,
F.
Birsa
,
N.
Gehrels
,
J.
Odom
,
D.
Palmer
,
C.
Sappington
,
P.
Shu
,
B. J.
Teegarden
, and
J.
Tueller
,
Proc. SPIE
2859
,
74
(
1996
).
3.
J. R.
Macri
,
D. B.
Boykin
,
K.
Larson
,
M.
Mayer
,
M. L.
McConnell
, and
J. M.
Ryan
,
Proc. SPIE
2859
,
29
(
1996
).
4.
D. G.
Marks
,
H. B.
Barber
,
H. H.
Barrett
,
E. L.
Dereniak
,
J. D.
Eskin
,
K. J.
Matherson
,
J. M.
Woolfenden
,
E. T.
Young
,
F. L.
Augustine
,
W. J.
Hamilton
,
J. E.
Venzon
,
B. A.
Apotovsky
, and
F. P.
Doty
,
IEEE Trans. Nucl. Sci.
43
,
1253
(
1996
).
5.
W.
Akutagawa
and
K.
Zanio
,
J. Appl. Phys.
40
,
3838
(
1969
).
6.
J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 44.
7.
O. Kellogg, Foundations of Potential Theory (Ungar, New York, 1929), p. 230.
8.
J. D. Eskin, Ph.D. dissertation, The University of Arizona, Tucson (1997), p. 108.
9.
S.
Ramo
,
Proc. IRE
27
,
584
(
1939
).
10.
W.
Shockley
,
J. Appl. Phys.
9
,
635
(
1938
).
11.
E. Durand, Electrostatique (Masson et Cie., Paris, 1966), Vol. II.
12.
D. J.
Wagenaar
and
R. A.
Terwilliger
,
Med. Phys.
22
,
627
(
1995
).
13.
A.
Castoldi
,
E.
Gatti
, and
E.
Rehak
,
IEEE Trans. Nucl. Sci.
40
,
256
(
1996
).
14.
D. McAllister, J. R. Smith, and N. J. Diserens, Computer Modelling in Electrostatics (Research Studies, Letchworth, Hertfordshire, England, 1985).
15.
S.
Kavadias
,
K.
Misiakos
, and
D.
Loukas
,
IEEE Trans. Nucl. Sci.
41
,
397
(
1994
).
16.
Z.
He
,
Nucl. Instrum. Methods Phys. Res. A
365
,
572
(
1995
).
17.
J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 48.
18.
M. R. Spiegel, Schaum’s Outline of Theory and Problems of Complex Variables (McGraw-Hill, New York, 1964), p. 197.
19.
I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), Eq. (6.666), p. 728.
20.
H. H.
Barrett
,
J. D.
Eskin
, and
H. B.
Barber
,
Phys. Rev. Lett.
75
,
156
(
1995
).
21.
L.-A. Hamel, J. R. Macri, C. M. Stahle, J. Odom, F. Birsa, P. Shu, and F. P. Doty, IEEE Nuclear Science Symposium and Medical Imaging Conference Record (1995), Vol. 1, pp. 139–143.
22.
J. D.
Eskin
,
H. B.
Barber
, and
H. H.
Barrett
,
Proc. SPIE
2859
,
46
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.