The thermophysical nature of CO2 laser texturing of glass is explored via numerical simulations. Recent data suggest that laser texture bumps are the product of a local elevation in fictive temperature in the heat affected zone. The numerical model is used to investigate the change in microstructure as manifested in a density change. Using viscosity data, the model employs a dynamic calculation of the glass transition temperature as a function of time scale. The calculation shows that the glass transition temperature increases by 150–300 K over the conventional value in the laser texture process. The maximum thermal penetration depth of the glass transition temperature is numerically determined and the density change calculated. On chemically strengthened glasses, laser texture leads to a density reduction of approximately 2%–3% in the heat affected zone. On unstrengthened glass the density reduction is ∼1.3%

1.
K. M.
Davis
,
K.
Miura
,
N.
Sugimoto
, and
K.
Hirao
,
Opt. Lett.
21
,
1729
(
1996
).
2.
S.
Pelli
,
G. C.
Righini
,
A.
Scaglione
,
M.
Guglielmi
, and
A.
Martucci
,
Opt. Mater.
5
,
119
(
1996
).
3.
M.
Fritze
,
M. B.
Stern
, and
P. W.
Wyatt
,
Opt. Lett.
23
,
141
(
1998
).
4.
H.
Su
and
M. R.
Wang
,
Proc. SPIE
2891
,
82
(
1996
).
5.
V. P.
Veiko
,
K. G.
Predko
,
V. P.
Volkov
, and
P. A.
Skiba
,
Proc. SPIE
1751
,
361
(
1993
).
6.
S.
Inoue
,
A.
Nukui
,
K.
Yamamoto
,
T.
Yano
,
S.
Shibata
,
M.
Yamane
, and
T.
Maeseto
,
Appl. Opt.
37
,
48
(
1998
).
7.
Y.
Miyake
,
H.
Nishikawa
,
E.
Watanabe
, and
D.
Ito
,
J. Non-Cryst. Solids
222
,
266
(
1997
).
8.
F. A.
Munoz
,
R. J.
Reeves
,
B.
Taheri
,
R. C.
Powell
,
D. H.
Blackburn
, and
D. C.
Cranmer
,
J. Chem. Phys.
98
,
6083
(
1993
).
9.
K.
Tsunetomo
and
T.
Koyama
,
Opt. Lett.
22
,
411
(
1997
).
10.
A. Y.
Smuk
and
N. M.
Lawandy
,
Opt. Lett.
22
,
1030
(
1997
).
11.
A. C.
Tam
,
J.
Brannon
,
P.
Baumgart
, and
I. K.
Pour
,
IEEE Trans. Magn.
33
,
3181
(
1997
).
12.
D.
Kuo
,
J.
Gui
,
B.
Marchon
,
S.
Lee
,
I.
Boszormenyi
,
J. J.
Liu
,
G. C.
Rauch
,
S.
Vierk
, and
D.
Meyer
,
IEEE Trans. Magn.
32
,
3753
(
1996
).
13.
T. D.
Bennett
,
D. J.
Krajnovich
,
L.
Li
, and
D.
Wan
,
J. Appl. Phys.
84
,
2897
(
1998
).
14.
G. O. Jones, Glass, 2nd ed. (Chapman and Hall, New York, 1971).
15.
A.
Agarwal
,
K. M.
Davis
, and
M.
Tomozawa
,
J. Non-Cryst. Solids
185
,
191
(
1995
).
16.
J. F.
Shackelford
,
J. S.
Masaryk
, and
R. M.
Fulrath
,
J. Am. Ceram. Soc.
53
,
417
(
1970
).
17.
R. J.
Bell
,
N. F.
Bird
, and
P.
Dean
,
J. Phys. C
1
,
299
(
1968
).
18.
A. Q.
Tool
,
J. Res. Natl. Bur. Stand.
37
,
73
(
1946
).
19.
O. S.
Narayanaswamy
,
J. Am. Ceram. Soc.
54
,
491
(
1971
).
20.
C. T.
Moynihan
,
P. B.
Macedo
,
C. J.
Montrose
,
P. K.
Gupta
,
M. A.
DeBolt
,
J. F.
Dill
,
B. E.
Dom
,
P. W.
Drake
,
A. J.
Easteal
,
P. B.
Elterman
,
R. P.
Moeller
,
H.
Sasabe
, and
J. A.
Wilder
,
Ann. (N.Y.) Acad. Sci.
279
,
15
(
1976
).
21.
A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, Boston, 1994).
22.
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th ed. (McGraw-Hill, New York, 1989).
23.
A. D.
McLachlan
and
F. P.
Meyer
,
Appl. Opt.
26
,
1728
(
1987
).
24.
Viscosity and Relaxation, edited by D. R. Uhlmann and N. J. Kreidl (Academic, Orlando, FL, 1986), Vol. 3.
25.
The “volume viscosity” governing microstructural relaxation is not equivalent to the ordinary shearing viscosity governing fluid flow. However, the ratio of the two are independent of temperature (see Ref. 14). This permits us to use ordinary viscosity data to calculate changes in the transition temperature, via Eq. (9).
26.
Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, FL, 1985).
This content is only available via PDF.
You do not currently have access to this content.