A comprehensive study is presented of the interactions of SiH radicals originating in silane containing plasmas with crystalline and amorphous silicon surfaces based on a detailed atomic-scale analysis. The hydrogen concentration on the surface is established to be the main factor that controls both the surface reaction mechanism and the reaction probability; other important factors include the location of impingement of the radical on the surface, as well as the molecular orientation of the radical with respect to the surface. On the ordered crystalline surfaces, the radical reacts in such a way as to maximize the number of Si–Si bonds it can form even if such bond formation requires dissociation of the radical and introduction of defects in the crystal structure. The radical is established to be fully reactive with the pristine Si(001)-(2×1) surface. This chemical reactivity is reduced significantly for the corresponding H-terminated surface with a hydrogen coverage of one monolayer. SiH is found to be highly reactive with surfaces of hydrogenated amorphous silicon films, independent of radical orientation and the location of impingement. Our simulations predict an average reaction probability of 95% for SiH with a-Si:H film surfaces, which is in excellent agreement with experimental data.

1.
R.
Galloni
,
Renewable Energy
8
,
400
(
1996
).
2.
C.
Beneking
,
B.
Rech
,
J.
Foelsch
, and
H.
Wagner
,
Phys. Status Solidi B
194
,
41
(
1996
).
3.
H.
Wagner
,
Phys. Status Solidi B
192
,
229
(
1995
).
4.
J. L.
Crowley
,
Solid State Technol.
35
,
94
(
1992
).
5.
G.
Ganguly
and
A.
Matsuda
,
Phys. Rev. B
47
,
3661
(
1993
).
6.
J. R.
Abelson
,
Appl. Phys. A: Solids Surf.
56
,
493
(
1993
).
7.
S.
Veprek
and
M.
Heintze
,
Plasma Chem. Plasma Process.
10
,
3
(
1990
).
8.
S.
Veprek
,
Thin Solid Films
175
,
129
(
1989
).
9.
J.
Perrin
,
J. Non-Cryst. Solids
137–138
,
639
(
1991
).
10.
K.
Tachibana
,
T.
Mukai
, and
H.
Harima
,
Jpn. J. Appl. Phys., Part 2
30
,
L1208
(
1991
).
11.
T. R.
Dietrich
,
S.
Chiussi
,
M.
Marek
,
A.
Roth
, and
F. J.
Comes
,
J. Phys. Chem.
95
,
9302
(
1991
).
12.
D. A.
Doughty
,
J. R.
Doyle
,
G. H.
Lin
, and
A.
Gallagher
,
J. Appl. Phys.
67
,
6220
(
1990
).
13.
M.
Katiyar
,
Y. H.
Yang
, and
J. R.
Abelson
,
J. Appl. Phys.
77
,
6247
(
1995
).
14.
R. W.
Collins
and
B. Y.
Yang
,
J. Vac. Sci. Technol. B
7
,
1155
(
1989
).
15.
N.
Itabashi
,
N.
Nishiwaki
,
M.
Magane
,
T.
Goto
,
A.
Matsuda
,
C.
Yamada
, and
E.
Hirota
,
Jpn. J. Appl. Phys., Part 1
29
,
585
(
1990
).
16.
N.
Itabashi
,
N.
Nishiwaki
,
M.
Magane
,
S.
Naito
,
T.
Goto
,
A.
Matsuda
,
C.
Yamada
, and
E.
Horita
,
Jpn. J. Appl. Phys., Part 2
29
,
L505
(
1990
).
17.
N.
Layadi
,
P.
Roca i Cabarrocas
,
B.
Drevillon
, and
I.
Solomon
,
Phys. Rev. B
52
,
5136
(
1995
).
18.
Y.
Yamamoto
,
H.
Nomura
,
T.
Tanaka
,
M.
Hiramatsu
,
M.
Hori
, and
T.
Goto
,
Jpn. J. Appl. Phys., Part 1
33
,
4320
(
1994
).
19.
K.
Tachibana
,
T.
Shirafuji
, and
Y.
Matsui
,
Jpn. J. Appl. Phys., Part 1
31
,
2588
(
1992
).
20.
T.
Ohira
,
O.
Ukai
,
T.
Adachi
,
Y.
Takeyuchi
, and
M.
Murata
,
Phys. Rev. B
52
,
8283
(
1995
).
21.
T.
Ohira
,
O.
Ukai
,
M.
Noda
,
Y.
Takeyuchi
,
M.
Murata
, and
H.
Yoshida
,
Mater. Res. Soc. Symp. Proc.
408
,
445
(
1996
).
22.
B. J.
Garrison
,
Chem. Soc. Rev.
21
,
155
(
1992
).
23.
I.
Kwon
,
R.
Biswas
, and
C. M.
Soukoulis
,
Phys. Rev. B
43
,
1859
(
1991
).
24.
I.
Kwon
,
R.
Biswas
, and
C. M.
Soukoulis
,
Phys. Rev. B
45
,
3332
(
1992
).
25.
C.
Roland
and
G. H.
Gilmer
,
Phys. Rev. B
47
,
16
286
(
1993
).
26.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1990).
27.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
28.
M. E.
Tuckermann
and
M.
Parinello
,
J. Chem. Phys.
101
,
1302
(
1994
).
29.
J.
Tersoff
,
Phys. Rev. Lett.
56
,
632
(
1986
).
30.
J.
Tersoff
,
Phys. Rev. B
37
,
6991
(
1988
).
31.
J.
Tersoff
,
Phys. Rev. B
38
,
9902
(
1988
).
32.
J.
Tersoff
,
Phys. Rev. B
39
,
5566
(
1989
).
33.
M. V. R.
Murty
and
H. A.
Atwater
,
Phys. Rev. B
51
,
4889
(
1995
).
34.
T.
Ohira
,
T.
Inamuro
, and
T.
Adachi
,
Mater. Res. Soc. Symp. Proc.
336
,
177
(
1994
).
35.
S. Ramalingam, A. Lopez, D. Maroudas, and E. S. Aydil (unpublished).
36.
S. Ramalingam, A. Lopez, D. Maroudas, E. S. Aydil, Electrochemical Society Symposia Series (to be published).
37.
P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic, London, 1981).
38.
D. Maroudas, M. E. Barone, and B. Meng, in Proceedings of the Fourth International Symposium on Process Physics and Modeling in Semiconductor Technology, edited by G. R. Srinivasan, C. S. Murthy, and S. T. Durham, The Electrochemical Society Symposia Series Vol. 96-4 (The Electrochemical Society, Pennington, NJ, 1996), pp. 387–397.
39.
M. E.
Barone
and
D.
Maroudas
,
J. Computer-Aided Mater. Design
4
,
63
(
1997
).
40.
F. F.
Abraham
,
Adv. Phys.
35
,
1
(
1986
).
41.
See for example,
D.
Srivastava
and
B. J.
Garrison
,
J. Chem. Phys.
95
,
6885
(
1991
).
42.
P.
Ho
,
G.
Breiland
, and
R. J.
Buss
,
J. Chem. Phys.
91
,
2627
(
1989
).
43.
M. T.
Yin
and
M. L.
Cohen
,
Phys. Rev. B
24
,
2303
(
1981
).
44.
G. P.
Kerker
,
G. L.
Steven
, and
M. L.
Cohen
,
Phys. Rev. B
17
,
706
(
1978
).
45.
B. I.
Craig
and
P. V.
Smith
,
Surf. Sci. Lett.
226
,
L55
(
1990
).
46.
J. E.
Northrup
,
Phys. Rev. B
44
,
1419
(
1991
).
47.
R.
Robertson
and
A.
Gallagher
,
J. Appl. Phys.
59
,
3402
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.