Rough surfaces are characterized by fractal geometry using a modified two-variable Weierstrass–Mandelbrot function. The developed algorithm yields three-dimensional fractal surface topographies representative of engineering rough surfaces. This surface model is incorporated into an elastic-plastic contact mechanics analysis of two approaching rough surfaces. Closed form solutions for the elastic and plastic components of the total normal force and real contact area are derived in terms of fractal parameters, material properties, and mean surface separation distance. The effects of surface topography parameters and material properties on the total deformation force are investigated by comparing results from two- and three-dimensional contact analyses and elastic and elastic-perfectly plastic material behaviors. For normal contact of elastic-perfectly plastic silica surfaces and range of surface interference examined, the interfacial force is predominantly elastic and the real contact area is approximately one percent of the apparent contact area or less, depending on the mean interfacial distance. The analysis can be easily modified to account for anisotropic fractal surfaces and different material behaviors.

1.
P. R.
Nayak
,
J. Lubr. Technol.
93
,
398
(
1971
).
2.
J. A.
Greenwood
and
J. B. P.
Williamson
,
Proc. R. Soc. London, Ser. A
295
,
300
(
1966
).
3.
P. R.
Nayak
,
Wear
26
,
305
(
1973
).
4.
J. I.
McCool
,
Wear
107
,
37
(
1986
).
5.
R. S.
Sayles
and
T. R.
Thomas
,
Nature (London)
271
,
431
(
1978
).
6.
A.
Majumdar
and
C. L.
Tien
,
Wear
136
,
313
(
1980
).
7.
T. L.
Warren
and
D.
Krajcinovic
,
Int. J. Solids Struct.
32
,
2907
(
1995
).
8.
T. L.
Warren
,
A.
Majumdar
, and
D.
Krajcinovic
,
J. Appl. Mech.
63
,
47
(
1996
).
9.
B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, CA, 1982).
10.
M. V.
Berry
and
Z. V.
Lewis
,
Proc. R. Soc. London, Ser. A
370
,
459
(
1980
).
11.
K.
Komvopoulos
and
W.
Yan
,
J. Tribol.
119
,
391
(
1997
).
12.
M.
Ausloos
and
D. H.
Berman
,
Proc. R. Soc. London, Ser. A
400
,
331
(
1985
).
13.
S.
Wang
and
K.
Komvopoulos
,
J. Tribol.
116
,
812
(
1994
).
14.
J. J.
Gagnepain
and
C.
Roques-Carmes
,
Wear
109
,
119
(
1986
).
15.
W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, Cambridge, U.K., 1992), pp. 123–158 and 266–319.
16.
E. Anguiano, M. Pancorbo, and M. Aguilar, Fractals in the Natural and Applied Sciences, edited by M. M. Novak (Elsevier Science, New York, NY, 1994), pp. 37–46.
17.
S.
Wang
and
K.
Komvopoulos
,
J. Tribol.
116
,
824
(
1994
).
18.
S.
Wang
and
K.
Komvopoulos
,
J. Tribol.
117
,
203
(
1995
).
19.
J.
Pullen
and
J. B. P.
Williamson
,
Proc. R. Soc. London, Ser. A
327
,
159
(
1972
).
20.
S. C. H.
Lin
and
I.
Pugacz-Muraszkiewicz
,
J. Appl. Phys.
43
,
119
(
1972
).
21.
G. W. McLellan and E. B. Shand, Glass Engineering Handbook (McGraw–Hill, New York, NY, 1984), pp. 2–23.
This content is only available via PDF.
You do not currently have access to this content.