A recently developed theory for predicting arc and electrode properties in gas metal arc welding (GMAW) has been generalized to include arc–electrode interfaces, variation of surface tension pressure with temperature, Marangoni forces and handling of weld pool development in stationary gas tungsten arc welding (GTAW). The new theory is a unified treatment of the arc, the anode, and the cathode, and includes a detailed account of sheath effects near the electrodes. The electrodes are included as dynamic entities and the volume of fluid method is used to handle the movement of the free surface of the molten metal at one electrode. Predictions can be made of the formation and shape of the welding droplets as a function of time in GMAW and also of weld pool development in GTAW, accounting for effects of surface tension, inertia, gravity, arc pressure, viscous drag force of the plasma, Marangoni effect and magnetic forces, and also for wire feed rate in GMAW. Calculations are made of current densities, electric potential, temperatures, pressures and velocities in two dimensions, both in the arc and also within the molten metal and solid electrodes. Calculations are presented for GMAW and GTAW for an arc in argon and the results are compared with experimental temperature measurements for the plasma and the electrodes.

1.
J.
Haidar
and
J. J.
Lowke
,
J. Phys. D
29
,
2951
(
1996
).
2.
J. Haidar and J. J. Lowke, in Progress in Plasma Processing of Materials 1997, Proceedings of Fourth International Thermal Plasma Processes Conference, Athens, Greece, 1996, edited by P. Fauchais (Begell House, New York, 1997), pp. 853–60.
3.
J.
Haidar
and
J. J.
Lowke
,
IEEE Trans. Plasma Sci.
25
,
931
(
1997
).
4.
J. J.
Lowke
,
R.
Morrow
, and
J.
Haidar
,
J. Phys. D
30
,
2033
(
1997
).
5.
J.
Haidar
,
J. Appl. Phys.
84
,
3530
(
1998
).
6.
A. B.
Murphy
and
C. J.
Arundell
,
Plasma Chem. Plasma Process.
14
,
451
(
1994
).
7.
D. L.
Evans
and
R. S.
Tankin
,
Phys. Fluids
10
,
1137
(
1967
).
8.
E. A. Brandes, Smithell’s Metals Reference Book, 6th ed. (Butterworths, London, 1983).
9.
A. Goldsmith, T. E. Waterman, and H. J. Hirschhorn, Handbook of Thermophysical Properties of Solid Materials (MacMillan, New York, 1961), Vol. 1, pp. 351.
10.
C. S. Kim, Thermophysical Properties of Stainless Steels (Argonne National Laboratory, Argonne, IL, 1975), ANL 75-55.
11.
M. L.
Lin
and
T. W.
Eagar
,
Weld. J. (Miami)
64
,
163s
(
1985
).
12.
R. S.
Devoto
,
Phys. Fluids
10
,
2105
(
1967
).
13.
H. A.
Dinulescu
and
E.
Pfender
,
J. Appl. Phys.
51
,
3149
(
1980
).
14.
B.
Rethfeld
,
J.
Wendelstorf
,
T.
Klein
, and
G.
Simon
,
J. Phys. D
29
,
121
(
1996
).
15.
I.
Langmuir
,
Phys. Rev.
33
,
954
(
1929
).
16.
K-U.
Riemann
,
J. Phys. D
24
,
493
(
1991
).
17.
N. A.
Sanders
and
E.
Pfender
,
J. Appl. Phys.
55
,
714
(
1984
).
18.
J.
Haidar
,
J. Phys. D
28
,
2494
(
1995
).
19.
J.
Haidar
,
J. Phys. D
30
,
2737
(
1997
).
20.
J. J.
Lowke
and
J. C.
Quartel
,
Aust. J. Phys.
50
,
539
(
1993
).
21.
S. G. Starling and A. J. Woodall, Physics (Longmans, London, 1958), pp. 104.
22.
C. W.
Hirt
and
B. D.
Nichols
,
J. Comput. Phys.
39
,
201
(
1981
).
23.
B. D. Nichols and C. W. Hirt, Los Alamos Scientific Laboratory Report No. LA8355, 1980.
24.
S. V. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw–Hill, New York), pp. 56 and 126.
25.
J. P.
Van Doormaal
and
G. D.
Raithby
,
Numerical Heat Transfer
7
,
147
(
1984
).
26.
J.
Haidar
and
A. J. D.
Farmer
,
J. Phys. D
27
,
555
(
1994
).
27.
J.
Haidar
and
A J. D.
Farmer
,
J. Phys. D
28
,
2089
(
1995
).
28.
P.
Villeminot
,
Soudage et Techniques Connexes
21
,
367
(
1967
).
29.
S. C.
Snyder
,
G. D.
Lassaham
, and
L. D.
Reynolds
,
Phys. Rev. E
48
,
4124
(
1993
).
30.
R. E.
Bently
,
J. Phys. D
30
,
2880
(
1997
).
31.
L. E.
Cram
,
L.
Poladian
, and
G.
Roumeliotis
,
J. Phys. D
21
,
418
(
1988
).
32.
K. C.
Hsu
and
E.
Pfender
,
J. Appl. Phys.
54
,
3818
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.