We have measured Nb–AlOxNb Josephson tunnel junctions which have resistive shunts with different parasitic inductances. Numerical simulations reveal that specific features in the experimental current–voltage (I–V) characteristics of these devices are dc signatures of complex ac behavior. Depending on the inductance of the shunt loop and the capacitance of the junction, these features may either appear or disappear as the temperature of the device is increased. Examination of the simulated voltage waveforms allows us to map regions of the parameter space which exhibit complicated behavior. These regions should be avoided when a nearly sinusoidal voltage waveform is desired, as is the case for Josephson junction-based oscillators. The agreement of the experimental and simulated I–V curves also enables us to accurately determine the inductance of the shunts and the capacitance of the junctions.

1.
R. F.
Miracky
,
J.
Clarke
, and
R. H.
Koch
,
Phys. Rev. Lett.
50
,
856
(
1983
);
R. F. Miracky, Ph.D. thesis, University of California, Berkeley, 1984.
2.
J. E.
Zimmerman
and
A. H.
Silver
,
Phys. Rev. Lett.
19
,
14
(
1967
);
D. B.
Sullivan
,
R. L.
Peterson
,
V. E.
Kose
, and
J. E.
Zimmerman
,
J. Appl. Phys.
41
,
4865
(
1970
);
also see
Y.
Taur
and
P. L.
Richards
,
J. Appl. Phys.
46
,
1793
(
1975
).
3.
F. L.
Vernon
, Jr.
and
R. J.
Pedersen
,
J. Appl. Phys.
39
,
2661
(
1968
).
4.
N.
Calander
,
T.
Claeson
, and
S.
Rudner
,
Appl. Phys. Lett.
39
,
504
(
1981
);
N.
Calander
,
T.
Claeson
, and
S.
Rudner
,
Phys. Scr.
25
,
837
(
1982
).
5.
C. B.
Whan
,
C. J.
Lobb
, and
M. G.
Forrester
,
J. Appl. Phys.
77
,
382
(
1995
).
6.
K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, New York, 1986).
7.
A. K.
Jain
,
K. K.
Likharev
,
J. E.
Lukens
, and
J. E.
Sauvageau
,
Phys. Rep.
109
,
309
(
1984
).
8.
S. P.
Benz
and
C. J.
Burroughs
,
Appl. Phys. Lett.
58
,
2162
(
1991
).
9.
A. B.
Cawthorne
,
P.
Barbara
, and
C. J.
Lobb
,
IEEE Trans. Appl. Supercond.
7
,
3403
(
1997
).
10.
A. D.
Smith
,
R. D.
Sandell
,
A. H.
Silver
, and
J. F.
Burch
,
IEEE Trans. Magn.
MAG-23
,
1269
(
1987
).
11.
W. C.
Stewart
,
Appl. Phys. Lett.
12
,
277
(
1968
).
12.
D. E.
McCumber
,
J. Appl. Phys.
39
,
3113
(
1968
).
13.
A. B.
Cawthorne
,
C. B.
Whan
, and
C. J.
Lobb
,
IEEE Trans. Appl. Supercond.
7
,
2359
(
1997
).
14.
H.
Nyquist
,
Phys. Rev.
29
,
614
(
1927
);
J. B.
Johnson
,
Phys. Rev.
32
,
110
(
1928
).
15.
For examples of this and other numerical techniques, see W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University Press, Cambridge, 1988).
16.
For a general reference, see E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993).
17.
Hypres, Inc., 175 Clearbrook Rd., Elmsford, NY 10523.
18.
C. D.
Tesche
and
J.
Clarke
,
J. Low Temp. Phys.
29
,
301
(
1977
).
19.
D.
Rogovin
and
D. J.
Scalapino
,
Ann. Phys. (N.Y.)
86
,
1
(
1974
).
This content is only available via PDF.
You do not currently have access to this content.