The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces cation redistribution between A and B sites. These nanometer-sized particles show superparamagnetic relaxation effects at room temperature. It is found that the magnetization is not saturated even with an applied field of 9 T, possibly as the result of spin canting in the partially inverted CuFe2O4. The canted spin configuration is also suggested by the observed reduction in magnetization of particles in the blocked state. Upon increasing the milling time, nanometer-sized CuFe2O4 particles decompose, forming α-Fe2O3 and other phases, causing a further decrease of magnetization. After a milling time of 98 h, α-Fe2O3 is reduced to Fe3O4, and magnetization increases accordingly to the higher saturation magnetization value of magnetite. Three sequential processes during high-energy ball milling are established: (a) the synthesis of partially inverted CuFe2O4 particles with a noncollinear spin structure, (b) the decomposition of the starting CuFe2O4 onto several related Fe–Cu–O phases, and (c) the reduction of α-Fe2O3 to Fe3O4.

1.
See for example, Proceedings of the International Symposium on Ferrites in Asia ’97, Tokyo, Japan, September, 1997, and Proceedings of the Sixth International Conference on Ferrites, Tokyo, Japan, October, 1992.
2.
S. C.
Schaefer
,
G. L.
Hundley
,
F. E.
Block
,
R. A.
McCune
, and
R. V.
Mrazek
,
Metall. Trans. A
1
,
2557
(
1970
).
3.
B. J.
Evans
and
S.
Hafner
,
J. Phys. Chem. Solids
29
,
1573
(
1968
).
4.
S. Krupicka and P. Novák, “Oxide Spinels” in Ferromagnetic Materials, edited by E. P. Wolfarth (North-Holland, Amsterdam, 1982), Vol. 3.
5.
K. T.
Jacob
and
C. B.
Alcock
,
Metall. Trans. B
6
,
215
(
1975
);
J. D.
Dunitz
and
L. E.
Orgel
,
J. Phys. Chem. Solids
3
,
318
(
1957
).
6.
R. A. McCurrie, in Ferromagnetic Materials Structure and Properties (Academic, London, 1994), p. 134.
7.
H.
Bakker
,
G. F.
Zhou
, and
H.
Yang
,
Prog. Mater. Sci.
39
,
159
(
1995
), and references therein.
8.
Y. T.
Pavljukhin
,
Y.
Medikov
, and
V. V.
Boldyrev
,
J. Solid State Chem.
53
,
155
(
1984
);
Y. T.
Pavljukhin
,
Y.
Medikov
, and
V. V.
Boldyrev
,
Mater. Res. Bull.
18
,
630
(
1983
); and
V. V.
Boldyrev
,
Solid State Ionics
63
,
537
(
1993
), and references therein.
9.
A. Ye.
Yermakov
,
Mater. Sci. Forum
88–90
,
577
(
1992
), and references therein.
10.
K.
Tkacova
,
V.
Sepelak
,
N.
Stevulova
, and
V. V.
Boldyrev
,
J. Solid State Chem.
123
,
100
(
1996
); and
V.
Sepelek
,
K.
Tkacova
, and
V. V.
Boldyrev
,
Mater. Sci. Forum
228–231
,
783
(
1996
).
11.
JCPDS cards: 25-283, 34-425, 19-629, 33-664, 41-254, and 4-836 (International Centre for Diffraction Data, Swarthmore, PA, 1996).
12.
W.
Kundig
,
H.
Bömmel
,
G.
Constabaris
, and
R. H.
Lindquist
,
Phys. Rev.
142
,
327
(
1966
).
13.
S.
Linderoth
,
J. Z.
Jiang
, and
S.
Mo/rup
,
Mater. Sci. Forum
235–238
,
205
(
1997
).
14.
S. J.
Campbell
,
W. A.
Kaczmarek
, and
G. M.
Wang
,
Nanostruct. Mater.
6
,
735
(
1995
).
15.
P.
Matteazzi
and
G.
Le Caer
,
Mater. Sci. Eng., A
149
,
135
(
1991
).
16.
K. T.
Jacob
,
K.
Fitzner
, and
C. B.
Alcock
,
Metall. Trans. B
8
,
451
(
1977
).
17.
T.
Rosenqvist
and
A.
Hofseth
,
Scand. J. Metall.
9
,
129
(
1980
).
18.
C. C.
Koch
,
Mater. Sci. Eng.
15
,
194
(
1991
).
19.
G. B.
Schaffer
and
P. G.
McCormick
,
Metall. Trans. A
21
,
2789
(
1990
).
20.
See for example, C. C. Koch, in Material Science and Technology, edited by R. W. Cahn, P. Hassen, and E. J. Kramer (VCH, Weinheim, 1991), Vol. 15, p. 193; and
W. L.
Johnson
,
Prog. Mater. Sci.
30
,
81
(
1986
).
21.
W. A.
Kaczmarek
and
B. W.
Ninham
,
IEEE Trans. Magn.
30
,
732
(
1994
);
W. A.
Kaczmarek
,
I.
Onyszkiewicz
, and
B. W.
Ninham
,
IEEE Trans. Magn.
30
,
4725
(
1994
).
22.
T.
Kosmac
and
T. H.
Courtney
,
J. Mater. Res.
7
,
1519
(
1992
).
23.
J. Z.
Jiang
,
Y. X.
Zhou
,
S.
Mo/rup
, and
C. B.
Koch
,
Nanostruct. Mater.
7
,
401
(
1996
).
24.
S.
Begin-Colin
,
G.
Le Caer
,
M.
Zandona
,
E.
Bouzy
, and
B.
Malaman
,
J. Alloys Compd.
227
,
157
(
1995
).
25.
R. C. Weast, M. J. Astle, and W. H. Beyer, in Handbook of Chemistry and Physics, 64th ed. (CRC, Boca Raton, Florida, 1983–1984), D-51.
26.
A. H. Morrish, in The Physical Principles of Magnetism (Wiley, New York, 1966), p. 503.
27.
J. Smit and H. P. J. Wijn, Ferrites (Philips, The Netherlands, 1959).
28.
N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy (Chapman and Hall, London, 1971).
29.
V. A. M. Brabers, in Handbook of Magnetic Materials, edited by K. H. J. Buschow (North-Holland, Amsterdam, 1995), Vol. 8, p. 297.
30.
J. Z. Jiang (unpublished).
31.
A. E.
Berkowitz
,
J. A.
Lahut
,
I. S.
Jacobs
,
L. M.
Levinson
, and
D. W.
Forester
,
Phys. Rev. Lett.
34
,
594
(
1975
);
A. E.
Berkowitz
,
J. A.
Lahut
, and
C. E.
VanBuren
,
IEEE Trans. Magn.
16
,
184
(
1980
).
32.
A. H. Morrish, Canted Antiferromagnetism: Hematite (World Scientific, Singapore, 1994).
33.
B. D. Cullity, in Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972), p. 190.
This content is only available via PDF.
You do not currently have access to this content.