Self-organized hexagonal pore arrays with a 50–420 nm interpore distance in anodic alumina have been obtained by anodizing aluminum in oxalic, sulfuric, and phosphoric acid solutions. Hexagonally ordered pore arrays with distances as large as 420 nm were obtained under a constant anodic potential in phosphoric acid. By comparison of the ordered pore formation in the three types of electrolyte, it was found that the ordered pore arrays show a polycrystalline structure of a few micrometers in size. The interpore distance increases linearly with anodic potential, and the relationship obtained from disordered porous anodic alumina also fits for periodic pore arrangements. The best ordered periodic arrangements are observed when the volume expansion of the aluminum during oxidation is about 1.4 which is independent of the electrolyte. The formation mechanism of ordered arrays is consistent with a previously proposed mechanical stress model, i.e., the repulsive forces between neighboring pores at the metal/oxide interface promote the formation of hexagonally ordered pores during the oxidation process.

1.
R. J.
Tonucci
,
B. L.
Justus
,
A. J.
Campillo
, and
C. E.
Ford
,
Science
258
,
783
(
1992
).
2.
T. W.
Whitney
,
J. S.
Jiang
,
P. C.
Searson
, and
C. L.
Chien
,
Science
261
,
1316
(
1993
).
3.
F.
Keller
,
M. S.
Hunter
, and
D. L.
Robinson
,
J. Electrochem. Soc.
100
,
411
(
1953
).
4.
H.
Masuda
and
K.
Fukuda
,
Science
268
,
1466
(
1995
).
5.
H.
Masuda
,
F.
Hasegawa
, and
S.
Ono
,
J. Electrochem. Soc.
144
,
L127
(
1997
).
6.
O.
Jessensky
,
F.
Müller
, and
U.
Gösele
,
Appl. Phys. Lett.
72
,
1173
(
1998
).
7.
O. Jessensky, F. Müller, and U. Gösele, J. Electrochem. Soc. (to be published).
8.
K.
Ebihara
,
H.
Takahashi
, and
M.
Nagayama
,
J. Met. Finish. Soc. Jpn.
34
,
548
(
1983
).
9.
T.
Pavlovic
and
A.
Ignatiev
,
Thin Solid Films
138
,
97
(
1986
).
10.
See, for example, P. Czokan, in Advances in Corrosion Science and Technology, edited by M. G. Fontana and R. W. Staehle (Plenum, New York, 1980), Vol. 7, p. 239;
G. E. Thompson and G. C. Wood, in Treatise on Materials Science and Technology, edited by J. C. Scully (Academic, New York, 1983), Vol. 23, p. 205;
K.
Ebihara
,
H.
Takahashi
, and
M.
Nagayama
,
J. Met. Finish. Soc. Jpn.
33
,
4
(
1982
).
11.
D. H.
Bradhurst
and
J. S. L.
Leach
,
J. Electrochem. Soc.
113
,
1245
(
1966
).
12.
L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties (Pergamon, New York, 1988).
13.
O.
Belmont
,
D.
Bellet
, and
Y.
Brechet
,
J. Appl. Phys.
79
,
7586
(
1996
).
14.
G.
Dolino
,
D.
Bellet
, and
C.
Faivre
,
Phys. Rev. B
54
,
17919
(
1996
).
15.
D. H.
Bradhurst
and
J. S. L.
Leach
,
Trans. Br. Ceram. Soc.
62
,
793
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.