The vibrational characteristics of a cantilever beam are well known to strongly depend on the fluid in which the beam is immersed. In this paper, we present a detailed theoretical analysis of the frequency response of a cantilever beam, that is immersed in a viscous fluid and excited by an arbitrary driving force. Due to its practical importance in application to the atomic force microscope (AFM), we consider in detail the special case of a cantilever beam that is excited by a thermal driving force. This will incorporate the presentation of explicit analytical formulae and numerical results, which will be of value to the users and designers of AFM cantilever beams.

1.
W.-H. Chu, Tech. Rep. No. 2, DTMB, Contract NObs-86396(X), Southwest Research Institute, San Antonio, Texas (1963).
2.
U. S.
Lindholm
,
D. D.
Kana
,
W.-H.
Chu
, and
H. N.
Abramson
,
J. Ship Res.
9
,
11
(
1965
).
3.
D. G. Stephens and M. A. Scavullo, NASA TN D-1865 (April 1965).
4.
L.
Landweber
,
J. Ship Res.
11
,
143
(
1967
).
5.
W. E.
Newell
,
Science
161
,
1320
(
1968
).
6.
A. T.
Jones
,
Exp. Mech.
10
,
84
(
1970
).
7.
L.
Landweber
,
J. Ship Res.
15
,
97
(
1971
).
8.
G.
Muthuveerappan
,
N.
Ganesan
, and
M. A.
Veluswami
,
J. Sound Vib.
61
,
467
(
1978
).
9.
D. G.
Crighton
,
J. Sound Vib.
87
,
429
(
1983
).
10.
G.
Muthuveerappan
,
N.
Ganesan
, and
M. A.
Veluswami
,
Comput. Struct.
21
,
479
(
1985
).
11.
Y.
Fu
and
W. G.
Price
,
J. Sound Vib.
118
,
495
(
1987
).
12.
R. E.
Hetrick
,
Sens. Actuators
18
,
131
(
1989
).
13.
T.
Tschan
and
N.
de Rooij
,
Sens. Actuators A
32
,
375
(
1992
).
14.
H.-J.
Butt
,
P.
Siedle
,
K.
Seifert
,
K.
Fendler
,
T.
Seeger
,
E.
Bamberg
,
A. L.
Weisenhorn
,
K.
Goldie
, and
A.
Engel
,
J. Microsc.
169
,
75
(
1993
).
15.
B.
Abedian
and
M.
Cundari
,
Proc. SPIE
1916
,
454
(
1993
).
16.
G. Y.
Chen
,
R. J.
Warmack
,
T.
Thundat
, and
D. P.
Allison
,
Rev. Sci. Instrum.
65
,
2532
(
1994
).
17.
J. E.
Sader
,
I.
Larson
,
P.
Mulvaney
, and
L. R.
White
,
Rev. Sci. Instrum.
66
,
3789
(
1995
).
18.
D. A.
Walters
,
J. P.
Cleveland
,
N. H.
Thomson
,
P. K.
Hansma
,
M. A.
Wendman
,
G.
Gurley
, and
V.
Elings
,
Rev. Sci. Instrum.
67
,
3583
(
1996
).
19.
T. E.
Schaffer
,
J. P.
Cleveland
,
F.
Ohnesorge
,
D. A.
Walters
, and
P. K.
Hansma
,
J. Appl. Phys.
80
,
3622
(
1996
).
20.
H.
Muramatsu
,
N.
Chiba
,
K.
Homma
,
K.
Nakajima
,
T.
Ataka
,
S.
Ohta
,
A.
Kusumi
, and
M.
Fujihira
,
Thin Solid Films
273
,
335
(
1996
).
21.
A.
Roters
and
D.
Johannsmann
,
J. Phys.: Condens. Matter
8
,
7561
(
1996
).
22.
M. K.
Kwak
,
Trans. ASME, J. Appl. Mech.
63
,
110
(
1996
).
23.
T. E.
Schaffer
,
M.
Viani
,
D. A.
Walters
,
B.
Drake
,
E. K.
Runge
,
J. P.
Cleveland
,
M. A.
Wendman
, and
P. K.
Hansma
,
Proc. SPIE
3009
,
48
(
1997
).
24.
F.-J.
Elmer
and
M.
Dreier
,
J. Appl. Phys.
81
,
7709
(
1997
).
25.
M.
Tortonese
and
M.
Kirk
,
Proc. SPIE
3009
,
53
(
1997
).
26.
L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1970).
27.
This is directly applicable to cantilever beams of small dimensions, such as those encountered in the atomic force microscope.
28.
T. R.
Albrecht
,
S.
Akamine
,
T. E.
Carver
, and
C. F.
Quate
,
J. Vac. Sci. Technol. A
8
,
3386
(
1990
).
29.
K. E.
Petersen
and
C. R.
Guarnieri
,
J. Appl. Phys.
50
,
6761
(
1979
).
30.
H.-J.
Butt
and
M.
Jaschke
,
Nanotechnology
6
,
1
(
1995
).
31.
M. V.
Salapaka
,
H. S.
Bergh
,
J.
Lai
,
A.
Majumdar
, and
E.
McFarland
,
J. Appl. Phys.
81
,
2480
(
1997
).
32.
J. L.
Hutter
and
J.
Bechhoefer
,
Rev. Sci. Instrum.
64
,
1868
(
1993
).
33.
J. W. M. Chon, P. Mulvaney, and J. E. Sader (in preparation).
34.
This condition can be satisfied even for beams with salient edges, since in practice the radius of curvature of such edges is never zero.
35.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1975).
36.
G. K. Batchelor, Fluid Dynamics (Cambridge University Press, Cambridge, UK, 1974).
37.
The convention adopted for the Reynolds number is in line with Ref. 36. We point out that the Reynolds number is often associated with the nonlinear convective inertial term of the Navier Stokes equation. This latter convention has not been adopted here.
38.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
39.
L. Rosenhead, Laminar Boundary Layers (Clarendon, Oxford, 1963).
40.
For consistency with Eq. (6), the oscillations have a time dependence given by exp(−iωt), corresponding to a forward traveling wave.
41.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
42.
R. P.
Kanwal
,
Z. Angew. Math. Mech.
35
,
17
(
1955
).
43.
E. O.
Tuck
,
J. Eng. Math.
3
,
29
(
1969
).
This content is only available via PDF.
You do not currently have access to this content.