Large scale wavelike patterns are observed on an aluminum surface after it is ablated by a series of KrF laser pulses (248 nm, 40 ns, 5 J/cm2). These surface structures have a wavelength on the order of 30 μm, much longer than the laser wavelength. We postulate that these wave patterns are caused by the Kelvin–Helmholtz instability at the interface between the molten aluminum and the plasma plume. A parametric study is given in terms of the molten layer’s thickness and of the spatial extent and kinetic energy density in the laser-produced plasma plume. Also included is an estimate of the cumulative growth in a multipulse laser ablation experiment. These estimates indicate that the Kelvin–Helmholtz instability is a viable mechanism for the formation of the large scale structures.

1.
D. B. Chrisey, and G. K. Hubler, Pulsed Laser Deposition of Thin films (Wiley, New York, 1994).
2.
H. L.
Spindler
,
R. M.
Gilgenbach
, and
J. S.
Lash
,
Appl. Phys. Lett.
68
,
3245
(
1996
).
3.
S. R.
Foltyn
,
R. C.
Dye
,
K. C.
Ott
,
E.
Peterson
,
K. M.
Hubbard
,
W.
Hutchinson
,
R. E.
Muenchausen
,
R. C.
Estler
, and
X. D.
Wu
,
Appl. Phys. Lett.
59
,
594
(
1991
).
4.
R.
Kelly
and
J. E.
Rothenberg
,
Nucl. Instrum. Methods Phys. Res. B
7/8
,
755
(
1985
);
R.
Kelly
,
J. J.
Cuomo
,
P. A.
Leary
,
J. E.
Rothenberg
,
B. E.
Braren
, and
C. F.
Aliotta
,
Nucl. Instrum. Methods Phys. Res. B
9
,
329
(
1985
);
J. E.
Rothenberg
and
R.
Kelly
,
Nucl. Instrum. Methods Phys. Res. B
1
,
291
(
1984
).
5.
H. M.
van Driel
,
J. E.
Sipe
, and
J. F.
Young
,
Phys. Rev. Lett.
49
,
1955
(
1982
);
J. E.
Sipe
,
J. F.
Young
,
J. S.
Preston
, and
H. M.
van Driel
,
Phys. Rev. B
27
,
1141
(
1983
).
6.
F.
Keilmann
,
Phys. Rev. Lett.
51
,
2097
(
1983
);
S. R. J.
Brueck
, and
D. J.
Ehrlich
,
Phys. Rev. Lett.
48
,
1678
(
1982
).
7.
S. A.
Akhmanov
,
V. I.
Emel’yanov
,
N. I.
Koroteev
, and
V. N.
Seminogov
,
Sov. Phys. Usp.
28
,
1084
(
1985
);
O.
Bostanjoglo
and
T.
Nick
,
J. Appl. Phys.
79
,
8725
(
1996
).
8.
A. B.
Brailovsky
,
S. V.
Gaponov
, and
V. I.
Luchin
,
Appl. Phys. A: Solids Surf.
61
,
81
(
1995
).
9.
L. K.
Ang
,
Y. Y.
Lau
,
R. M.
Gilgenbach
, and
H. L.
Spindler
,
Appl. Phys. Lett.
70
,
696
(
1997
).
10.
J. S. Lash, Ph.D. dissertation, University of Michigan, 1996.
11.
R. M.
Gilgenbach
,
C. H.
Ching
,
J. S.
Lash
, and
R. A.
Lindley
,
Phys. Plasmas
1
,
1619
(
1994
).
12.
R. A.
Lindley
,
R. M.
Gilgenbach
,
C. H.
Ching
, and
J. S.
Lash
,
J. Appl. Phys.
76
,
5457
(
1994
).
13.
R. M.
Gilgenbach
and
P. L. G.
Ventzek
,
Appl. Phys. Lett.
58
,
1597
(
1991
).
14.
P. L. G.
Ventzek
,
R. M.
Gilgenbach
,
C. H.
Ching
, and
R. A.
Lindley
,
J. Appl. Phys.
72
,
1696
(
1992
).
15.
P. L. G.
Ventzek
,
R. M.
Gilgenbach
,
J. A.
Sell
, and
D. M.
Heffelfinger
,
J. Appl. Phys.
68
,
965
(
1990
).
16.
P. L. G.
Ventzek
,
R. M.
Gilgenbach
,
D. M.
Heffelfinger
, and
J. A.
Sell
,
J. Appl. Phys.
70
,
587
(
1991
).
17.
X.
Mao
and
R. E.
Russo
,
Appl. Phys. A: Solids Surf.
64
,
1
(
1997
).
18.
See, e.g., D. Bauerle, in Laser Processing and Chemistry (Springer, Berlin, 1996), p. 409.
19.
RT instability model from Ref. 8 is based on acceleration produced by centrifugal force of molten flow at convex liquid-solid interface, which is a second-order effect (the velocity of molten flow is not high enough to produce a significant force).
20.
T. D.
Bennett
,
C. P.
Grigoropoulos
, and
D. J.
Krajnovich
,
J. Appl. Phys.
77
,
849
(
1995
). Here, we linearly interpolated the acceleration force (α) by using the Eq. (7) in this reference for our experiment of an A1 target ablated by laser intensity of 5 J/cm2. Note that even without interpolation, using the value from their case of 1 J/cm2, we have λm=8 μm.
21.
S. I. Anisimov and V. A. Khokhlov, Instabilities in Laser-Matter Interaction (Chemical Rubber Co., Boca Raton, 1995).
22.
See, e.g., S. Chandrasekhar, in Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961), Chap 6. Note that viscosity term has been included.
23.
The difference in the inequality is of order 103, for ρ=density of molten Al=2.37 g/cm3, σ=0.865 N/m, ν=1.055×10−2cm2/s, and g=9.8 m/s2.
24.
In the ablation plume, the ion component can been ignored as ion temperature is much lower than electron temperature. Note that the electron density is difficult to measure at the target surface, here we have estimated it is about 1019cm−3 (two orders higher than what we measured at 0.3 mm above the target surface).
25.
The depth of the molten aluminum, H1, is likewise expected to increase with N for small N. However, for larger values of N, the plasma plume becomes substantial and it may begin to absorb (and reflect) the laser light, leaving a much reduced fraction of laser energy that could reach the aluminum surface (Ref. 17). Thus, H1 is expected to be reduced as N becomes large. However, for simplicity we assume that H1 does not change much, which is around 1–3 μm.
26.
A.
Mele
,
A. G.
Guidoni
,
R.
Kelly
,
A.
Miotello
,
S.
Orlando
,
R.
Teghil
, and
C.
Flamini
,
Nucl. Instrum. Methods Phys. Res. B
116
,
257
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.