Photoluminescence (PL) and spectroscopic ellipsometry measurements on CdTe/Si strained heterostructures grown by molecular beam epitaxy were carried out to investigate the effect of the strain and the dependence of the strain on the Si tilted substrates. The results of the PL spectra showed that the relative intensity ratio between the peak at 1.452 eV and the bound-exciton peak for the CdTe epilayer grown on the Si (100) 1° tilted substrate had a minimum value and that the strain for the CdTe epilayer grown on the Si (100) 8° tilted substrate had a minimum value. When rapid thermal annealing (RTA) was performed at 55 °C, the PL spectra showed that the relative intensity ratio between the peak at 1.452 eV and that at 1.574 eV for the CdTe epilayer grown on the Si (100) 8° tilted substrate had a minimum value and that the strain for the CdTe epilayer grown on the Si (100) 1° tilted substrate had a minimum value. Spectroscopic ellipsometry measurements showed that the spectrum of the dielectric constant of the CdTe epilayer grown on the Si (100) 8° tilted substrate is similar to that of the CdTe bulk. These results indicate that the strains in the CdTe layers grown on Si substrates are strongly dependent on the Si substrate orientation and that the crystallinity of the CdTe epitaxial layer grown on the Si substrate is remarkably improved by RTA.

1.
Y. P.
Chen
,
S.
Sivananthan
, and
J. P.
Faurie
,
J. Electron. Mater.
22
,
951
(
1993
).
2.
J. P.
Faurie
,
R.
Sporken
,
Y. P.
Chen
,
M. D.
Lange
, and
S.
Sivananthan
,
Mater. Sci. Eng. B
16
,
51
(
1993
).
3.
T. J.
de Lyon
,
D.
Rajavel
,
S. M.
Johnson
, and
C. A.
Cockrum
,
Appl. Phys. Lett.
66
,
2119
(
1995
).
4.
Y. P.
Chen
J. P.
Faurie
, and
S.
Sivananthan
,
J. Electron. Mater.
24
,
475
(
1995
).
5.
A.
Million
,
N. K.
Dhar
, and
J. H.
Dinan
,
J. Cryst. Growth
159
,
76
(
1996
).
6.
T. H.
Myers
,
Y.
Lo
,
R. N.
Bicknell
, and
J. F.
Schetzina
,
Appl. Phys. Lett.
48
,
1395
(
1986
).
7.
T.
Siegrist
,
A.
Segmuller
,
H.
Mariette
, and
F.
Holtzberg
,
Appl. Phys. Lett.
48
,
1395
(
1986
).
8.
Y.
Lo
,
R. N.
Bicknell
,
T. H.
Myers
,
J. F.
Schetzina
, and
H. H.
Stadelmaier
,
J. Appl. Phys.
54
,
4238
(
1983
).
9.
R. L.
Chou
,
M. S.
Lin
, and
K. S.
Chou
,
Appl. Phys. Lett.
48
,
523
(
1986
).
10.
D. J.
Smith
,
S. C. Y.
Tsen
,
Y. P.
Chen
,
J. P.
Faurie
, and
S.
Sivananthan
,
Appl. Phys. Lett.
67
,
1591
(
1995
).
11.
C. H.
Wang
,
K. Y.
Cheng
, and
S. J.
Yang
,
Appl. Phys. Lett.
46
,
962
(
1985
).
12.
H.
Ebe
and
N.
Nishijima
,
Appl. Phys. Lett.
67
,
3138
(
1995
).
13.
J. J.
Cheung
and
T.
Magee
,
J. Vac. Sci. Technol. A
1
,
1604
(
1983
).
14.
H.
Sitter
,
K.
Lischa
,
W.
Faschinger
,
J.
Wolfrum
,
H.
Pascher
, and
J. L.
Pautrat
,
J. Cryst. Growth
86
,
377
(
1988
).
15.
S. M. Sze, VLSI Technology (McGraw-Hill, New York, 1988).
16.
A.
Ishizaka
and
Y.
Shiraki
,
J. Electrochem. Soc.
133
,
666
(
1986
).
17.
R.
Duszak
,
S.
Tatarenko
,
J.
Cibert
,
K.
Saminadayar
, and
C.
Deshayes
,
J. Vac. Sci. Technol. A
9
,
3205
(
1991
).
18.
R.
Sporken
,
Y. P.
Chen
,
S.
Sivananthan
,
M. D.
Lange
, and
J. P.
Faurie
,
J. Vac. Sci. Technol. B
10
,
1405
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.