Nanosecond KrF excimer laser ablation of benzyl chloride, benzyl alcohol, toluene, ethylbenzene, and n-propylbenzene diluted in n-hexane, n-heptane, dichloromethane, and 1,2-dichloroethane was investigated by time-resolved photographic, photoacoustic, and absorbance measurements. Ablation threshold values, Fth, for high concentration solutions (α=250 cm−1, 0.6–1 M) were confirmed to be correlated to photochemical reactivity (β-bond cleavage) of the solute molecules, whereas no distinct relation between Fth and boiling point of solvents was observed. Time-resolved absorbance at the laser wavelength was almost constant during the excitation pulse, which means that the main light-absorbing molecules were fixed to the ground-state solutes. It is considered that this type of ablation is initiated by the photochemical fragmentation. On the contrary, Fth observed in relatively low concentration solutions (α=25 cm−1, 0.06–0.1 M) were about twice higher than those for the high concentration solutions, and had no direct correlation with the photochemical reactivity of the solute molecules. The time-resolved absorbance increased during the excitation pulse, and was ascribed to the fact that benzyl radicals produced by the photodissociation of solute molecules absorbed the excitation photons and converted them into heat through “a cyclic multiphotonic absorption process.” Furthermore, morphological aspects observed in nanosecond photography exhibited appreciable differences by varying the solute concentrations. These results clearly mean a concentration-dependent ablation mechanism; the ablation mechanism of the benzene derivative solutions switches from photochemical to photothermal as the solute concentration decreases.

1.
R.
Srinivasan
,
B.
Braren
, and
K. G.
Gasey
,
J. Appl. Phys.
68
,
1842
(
1990
).
2.
G.
Koren
and
J. T. C.
Yeh
,
J. Appl. Phys.
56
,
2120
(
1984
).
3.
J. H.
Brannon
,
J. R.
Lankard
,
A. I.
Baise
,
F.
Burns
, and
J.
Kaufman
,
J. Appl. Phys.
58
,
2036
(
1985
).
4.
R.
Srinivasan
,
B.
Braren
, and
R. W.
Dreyfus
,
J. Appl. Phys.
61
,
372
(
1987
).
5.
R.
Srinivasan
and
W. J.
Leigh
,
J. Am. Chem. Soc.
104
,
6784
(
1982
).
6.
H.
Fukumura
,
K.
Hamano
, and
H.
Masuhara
,
J. Phys. Chem.
97
,
12
110
(
1993
).
7.
H.
Masuhara
,
H.
Hiraoka
, and
E. E.
Martinero
,
Chem. Phys. Lett.
135
,
103
(
1987
).
8.
Th.
Lippert
,
J.
Stebani
,
J.
Ihlemann
,
O.
Nuyken
, and
A.
Wokaun
,
J. Phys. Chem.
97
,
13
761
(
1993
).
9.
Y.
Tsuboi
,
S.
Sakashita
,
K.
Hatanaka
,
H.
Fukumura
, and
H.
Masuhara
,
Laser Chem.
16
,
167
(
1996
).
10.
R.
Srinivasan
and
B.
Braren
,
Chem. Rev.
38
,
1303
(
1989
).
11.
Y.
Kawamura
,
K.
Toyoda
, and
S.
Namba
,
Appl. Phys. Lett.
40
,
374
(
1982
).
12.
Y.
Kawamura
,
K.
Toyoda
, and
S.
Namba
,
J. Appl. Phys.
53
,
6489
(
1982
).
13.
Y.
Kawamura
,
K.
Toyoda
, and
S.
Namba
,
Rev. Laser Eng.
8
,
941
(
1980
).
14.
R.
Srinivasan
,
B.
Braren
,
R. W.
Dreyfus
,
L.
Hadel
, and
D. E.
Seeger
,
J. Opt. Soc. Am. B
3
,
785
(
1986
).
15.
H.
Masuhara
,
H.
Hiraoka
, and
K.
Domen
,
Macromolecules
20
,
450
(
1987
).
16.
T. J.
Chuang
,
H.
Hiraoka
, and
A.
Modl
,
Appl. Phys. A: Solids Surf.
45
,
277
(
1988
).
17.
H.
Hiraoka
,
T. J.
Chuang
, and
H.
Masuhara
,
J. Vac. Sci. Technol. B
6
,
463
(
1988
).
18.
H.
Fujiwara
,
T.
Hayashi
,
H.
Fukumura
, and
H.
Masuhara
,
Appl. Phys. Lett.
64
,
2451
(
1994
).
19.
H. Masuhara and H. Fukumura, Polym. News 17, 5 (1991).
20.
H.
Fukumura
,
N.
Mibuka
,
S.
Eura
, and
H.
Masuhara
,
Appl. Phys. A: Solids Surf.
53
,
255
(
1991
).
21.
R.
Srinivasan
and
V.
Mayne-Banton
,
Appl. Phys. Lett.
41
,
576
(
1982
).
22.
H. Fukumura and H. Masuhara, J. Photopolym. Sci. Technol. 5, 223 (1992).
23.
H.
Fukumura
,
E.
Takahashi
, and
H.
Masuhara
,
J. Phys. Chem.
99
,
750
(
1995
).
24.
A.
Itaya
,
A.
Kurahashi
,
H.
Masuhara
,
Y.
Taniguchi
, and
M.
Kiguchi
,
J. Appl. Phys.
67
,
2240
(
1990
).
25.
H. Fukumura, K. Hamano, and H. Masuhara, Chem. Lett. 245 (1993).
26.
H.
Fujiwara
,
H.
Fukumura
, and
H.
Masuhara
,
J. Phys. Chem.
99
,
11
844
(
1995
).
27.
H.
Fujiwara
,
Y.
Nakajima
,
H.
Fukumura
, and
H.
Masuhara
,
J. Phys. Chem.
99
,
11
481
(
1995
).
28.
H.
Fukumura
and
H.
Masuhara
,
Chem. Phys. Lett.
221
,
373
(
1994
).
29.
H. Fujiwara, H. Fukumoto, T. Hayashi, H. Fukumura, and H. Masuhara (unpublished).
30.
R.
Srinivasan
and
A. P.
Ghosh
,
Chem. Phys. Lett.
143
,
546
(
1988
).
31.
M.
Buck
and
P.
Hess
,
Appl. Surf. Sci.
43
,
358
(
1989
).
32.
Y.
Tsuboi
,
H.
Fukumura
, and
H.
Masuhara
,
J. Phys. Chem.
99
,
10
305
(
1995
).
33.
Y.
Tsuboi
,
H.
Fukumura
, and
H.
Masuhara
,
Appl. Phys. Lett.
64
,
2745
(
1994
).
34.
Y.
Tsuboi
,
K.
Hatanaka
,
H.
Fukumura
, and
H.
Masuhara
,
J. Phys. Chem.
98
,
11
237
(
1994
).
35.
K. Hatanaka, Y. Tsuboi, H. Fukumura, and H. Masuhara, Book of Abstracts in XVIIth International Conference on Photochemistry, London, 1995, p. 1P6.
36.
G.
Porter
and
E.
Strachan
,
Trans. Faraday Soc.
54
,
1595
(
1968
).
37.
Y. Tsuboi, K. Hatanaka, H. Fukumura, and H. Masuhara (unpublished).
38.
R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra, 4th ed. (Wiley, New York, 1976).
39.
M.
Dienstbier
,
R.
Banes
,
P.
Reifir
, and
P.
Sladky
,
Appl. Phys. B: Photophys. Laser Chem.
51
,
137
(
1990
).
40.
Y. Tsuboi, Doctor thesis, Osaka University, 1994.
41.
B. J.
Garrison
and
R.
Srinivasan
,
J. Appl. Phys.
57
,
2909
(
1985
).
42.
Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1967).
43.
P. E.
Dyer
and
J.
Sidhu
,
J. Appl. Phys.
64
,
4657
(
1988
).
44.
Y. Tsuboi, K. Hatanaka, H. Fukumura, and H. Masuhara, Proceedings of the 6th International Symposium on Advanced Nuclear Energy Research (JAERI Report) (Japan Atomic Energy Research Institute, Ibaraki, 1994), p. 839.
45.
F. W.
Cross
,
R. K.
Al-Dhahir
, and
P. E.
Dyer
,
J. Appl. Phys.
64
,
2194
(
1988
).
46.
P. E.
Dyer
,
M. E.
Khosroshahi
, and
S. J.
Tuft
,
Appl. Phys. B: Photophys. Laser Chem.
56
,
84
(
1993
).
47.
H. Hiratsuka (private communication).
48.
T.
Ichimura
and
Y.
Mori
,
J. Chem. Phys.
82
,
4723
(
1985
).
49.
T.
Takemura
,
M.
Fujita
, and
N.
Ohta
,
Chem. Phys. Lett.
145
,
215
(
1988
).
50.
D.
Albagli
,
M.
Dark
,
L. T.
Perelman
,
C.
von Rosenberg
,
I.
Itzkan
, and
M. S.
Feld
,
Opt. Lett.
19
,
1684
(
1994
).
51.
C.
Huggenberger
and
H.
Fischer
,
Helv. Chim. Acta
64
,
338
(
1981
).
52.
H.
Fujii
,
K.
Yoshino
, and
Y.
Inuishi
,
J. Phys. D
10
,
1975
(
1977
).
53.
A.
Hinchliffe
,
R. E.
Stainbank
, and
M. A.
Ali
,
Theor. Chim. Acta
5
,
95
(
1966
).
54.
D. M.
Friedrich
and
A. C.
Albrecht
,
J. Chem. Phys.
58
,
4766
(
1973
).
55.
D.
Meisel
,
P. K.
Das
,
G. L.
Hug
,
K.
Bhattacharyya
, and
R. W.
Fessenden
,
J. Am. Chem. Soc.
108
,
4706
(
1986
).
56.
J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents, Physical Properties and Methods of Purification, 4th ed. (Wiley, New York, 1986).
57.
G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University Press, New York, 1986).
This content is only available via PDF.
You do not currently have access to this content.