A very sensitive dielectric resonator technique is employed to measure loss tangent tan δ and relative permittivity εr of lanthanum aluminate (LaAlO3) single crystals at 4–300 K and 4–12 GHz. A variety of single crystals grown by different techniques and purchased from different suppliers are considered. For T>150 K the loss tangent tan δ is almost sample independent with linear frequency dependence and monotonous temperature variation from 8×10−6 at 300 K to 2.5×10−6 at 150 K and 4.1 GHz. In this temperature range the experimental data are explained by a model based on lifetime broadened two-phonon difference processes. The loss tangent below 150 K is characterized by a peak in tan δ(T) at about 70 K. The height of this peak is frequency and strongly sample dependent. This leads to a variation of the loss tangent from 10−6 to 1.5×10−5 at 77 K and 8.6 GHz, the lowest values are generally achieved with Verneuil grown crystals and approach the intrinsic lower limit predicted by the phonon model. The peak is explained by defect dipole relaxation (local motions of ions). The activation energy of the relaxation process is determined from the measured data to be 31 meV. This low value indicates that the defect dipoles are associated with interstitials, possibly impurities in interstitial positions. Considering absorption due to phonons and due to defect dipole relaxation the loss tangent is calculated for a wide frequency range.

1.
Z.-Y.
Shen
,
C. H.
Wilker
,
Ph.
Pang
,
W. L.
Holstein
,
D.
Face
, and
D. J.
Kountz
,
IEEE Trans. Microwave Theory Tech.
40
,
2424
(
1992
).
2.
N.
Klein
,
A.
Scholen
,
N.
Tellmann
,
C.
Zuccaro
, and
K.
Urban
,
IEEE Trans. Microwave Theory Tech.
44
,
1369
(
1996
).
3.
G. A.
Samara
,
J. Appl. Phys.
68
,
4214
(
1990
).
4.
T.
Konaka
,
M.
Sato
,
H.
Asano
, and
S.
Kubo
,
J. Supercond.
4
,
283
(
1991
).
5.
J.
Krupka
,
R. G.
Geyer
,
M.
Kuhn
, and
J. H.
Hinken
,
IEEE Trans. Microwave Theory Tech.
42
,
1886
(
1994
).
6.
N.
Tellmann
,
N.
Klein
,
U.
Dähne
,
A.
Scholen
,
H.
Schulz
, and
H.
Chaloupka
,
IEEE Trans. Appl. Supercond.
4
,
143
(
1994
).
7.
G.
Müller
,
B.
Aschermann
,
H.
Chaloupka
,
W.
Diete
,
M.
Getta
,
B.
Gurzinski
,
M.
Hein
,
M.
Jeck
,
T.
Kaiser
,
S.
Kolesov
,
H.
Piel
,
H.
Schlick
, and
R.
Theisejans
,
IEEE Trans. Appl. Supercond.
7
,
1287
(
1997
).
8.
M.
Dehler
,
M.
Dohlus
,
A.
Fischerauer
,
G.
Fischerauer
,
P.
Hahne
,
R.
Klatt
,
F.
Krawczyk
,
T.
Pröpper
,
P.
Schütt
,
T.
Weiland
,
F.
Ebeling
,
M.
Marx
,
S. G.
Wipf
,
B.
Steffen
,
T.
Barts
,
J.
Browman
,
R. K.
Cooper
,
G.
Rodenz
, and
D.
Rusthoi
,
IEEE Trans. Magn.
26
,
751
(
1990
).
9.
H. M.
O’Bryan
,
P. K.
Gallagher
,
G. W.
Berkstresser
, and
C. D.
Brandle
,
J. Mater. Res.
5
,
183
(
1990
).
10.
G. Link, Ph.D. thesis, Forschungszentrum Karlsruhe, Germany, 1993.
11.
In a previous paper (Ref. 12) filling factors κ and κAl2O3 were erroneuosly taken as the fraction of the total magnetic energy stored in the dielectric sample and the sapphire rod, respectively, and therefore underestimated. For this reason, the loss tangent of the sample was slightly overestimated.
12.
C.
Zuccaro
,
I.
Ghosh
,
K.
Urban
,
N.
Klein
,
S.
Penn
, and
N. McN.
Alford
,
IEEE Trans. Appl. Supercond.
7
,
3715
(
1997
).
13.
V. B.
Braginsky
,
V. S.
Ilchenko
, and
Kh. S.
Bagdassarov
,
Phys. Lett. A
120
,
300
(
1987
).
14.
R.
Heidinger
,
J. Nucl. Mater.
212–215
,
1101
(
1994
).
15.
G. E. H.
Reuter
and
E. H.
Sondheimer
,
Proc. R. Soc. London, Ser. A
195
,
336
(
1948
).
16.
Materials at Low Temperatures, edited by R. P. Reed and A. F. Clark (American Society for Metals, Metals Park, OH, 1983).
17.
R. G.
Chambers
,
Proc. R. Soc. London, Ser. A
215
,
481
(
1952
).
18.
R. K. Hoffmann, Handbook of Microwave Integrated Circuits (Artech House, Norwood, 1987).
19.
S.
Geller
and
V. B.
Bala
,
Acta Crystallogr.
9
,
1019
(
1956
).
20.
K. A.
Müller
,
W.
Berlinger
, and
F.
Waldner
,
Phys. Rev. Lett.
21
,
814
(
1968
).
21.
G. W.
Berkstresser
,
A. J.
Valentino
, and
C. D.
Brandle
,
J. Cryst. Growth
109
,
467
(
1991
).
22.
G. W.
Berkstresser
,
A. J.
Valentino
, and
C. D.
Brandle
,
J. Cryst. Growth
128
,
684
(
1993
).
23.
Y.-C.
Chang
,
D.-S.
Hou
,
Y.-D.
Yu
,
S.-S.
Xie
, and
T.
Zhou
,
J. Cryst. Growth
129
,
362
(
1993
).
24.
G. A.
Samara
,
Phys. Rev.
165
,
959
(
1968
).
25.
G. A.
Samara
,
Phys. Rev. B
13
,
4529
(
1976
).
26.
M.
Sparks
,
D. F.
King
, and
D. L.
Mills
,
Phys. Rev. B
26
,
6987
(
1982
).
27.
R. A.
Cowley
,
Rep. Prog. Phys.
31
,
123
(
1968
).
28.
K. R.
Subbaswamy
and
D. L.
Mills
,
Phys. Rev. B
33
,
4213
(
1986
).
29.
V. L.
Gurevich
and
A. K.
Tagantsev
,
Adv. Phys.
40
,
719
(
1991
).
30.
R. Stolen and K. Dransfeld, Phys. Rev. 139, 1295 (1965).
31.
D.
Grischkowsky
and
S.
Keiding
,
Appl. Phys. Lett.
57
,
1055
(
1990
).
32.
J. D.
Axe
,
G.
Shirane
, and
K. A.
Müller
,
Phys. Rev.
183
,
820
(
1969
).
33.
I. Bunget and M. Popescu, Physics of Solid Dielectrics, Material Science Monograph 19 (Elsevier, Amsterdam, 1984).
34.
K. S.
Cole
and
R. H.
Cole
,
J. Chem. Phys.
9
,
341
(
1969
).
35.
In this paper, the term dipole relaxation designates the whole variety of relaxation phenomena connected with defects and not just dipolar relaxation related to an ac conductivity.
36.
J. M.
Stevels
,
J. Non-Cryst. Solids
40
,
69
(
1980
).
37.
J. M.
Stevels
and
J.
Volger
,
Philips Res. Rep.
17
,
283
(
1962
).
38.
H. J. C. A.
Quinten
,
W. J. Th.
Van Gemert
, and
J. M.
Stevels
,
J. Non-Cryst. Solids
29
,
333
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.