In traditional band-to-band Auger recombination theory, the low-injection carrier lifetime is an inverse quadratic function of the doping density. However, for doping densities below about 3×1018cm−3, the low-injection Auger lifetimes measured in the past on silicon were significantly smaller than predicted by this theory. Recently, a new theory has been developed [A. Hangleiter and R. Häcker, Phys. Rev. Lett. 65, 215 (1990)] that attributes these deviations to Coulombic interactions between mobile charge carriers. This theory has been supported experimentally to a high degree of accuracy in n-type silicon; however, no satisfactory support for it has been found in p-type silicon for doping densities below 3×1017cm−3. In this work, we investigate the most recent lifetime measurements of crystalline silicon and support experimentally the Coulomb-enhanced Auger theory in p-type silicon in the doping range down to 1×1016cm−3. Based on the experimental data, we present an empirical parameterisation of the low-injection Auger lifetime. This parameterisation is valid in n- and p-type silicon with arbitrary doping concentrations and for temperatures between 70 and 400 K. We implement this parameterisation into a numerical device simulator to demonstrate how the new Auger limit influences the open-circuit voltage capability of silicon solar cells. Further, we briefly discuss why the Auger recombination rates are less enhanced under high-injection conditions than under low-injection conditions.

1.
M.
Tyagi
and
R.
van Overstraeten
,
Solid-State Electron.
26
,
577
(
1983
).
2.
D.
Laks
,
G.
Neumark
, and
S.
Pantelides
,
Phys. Rev. B
42
,
5176
(
1990
).
3.
J.
Dziewior
and
W.
Schmid
,
Appl. Phys. Lett.
31
,
346
(
1977
).
4.
J.
Beck
and
R.
Conradt
,
Solid State Commun.
13
,
93
(
1973
).
5.
J. del Alamo, S. Swirhun, and R. M. Swanson, Tech. Dig. Int. Electron Devices Meet., 290 (1985).
6.
C. H.
Wang
and
A.
Neugroschel
,
IEEE Electron Device Lett.
11
,
576
(
1990
).
7.
A.
Wieder
,
IEEE Trans. Electron Devices
27
,
1402
(
1980
).
8.
J.
Fossum
,
R.
Mertens
,
D.
Lee
, and
J.
Nijs
,
Solid-State Electron.
26
,
569
(
1983
).
9.
D. Huber, A. Bachmeier, R. Wahlrich, and H. Herzer, Proceedings of the Fifth International Symposium on Silicon Materials Science and Technology, Boston, MA 1986, pp. 1022–1032.
10.
P. A. Iles and S. I. Soclof, Proceedings of the 11th IEEE Photovoltaic Specialists Conference, Scottsdale, AZ, 1975, p. 19.
11.
J.
Krausse
,
Solid-State Electron.
17
,
427
(
1974
).
12.
G.
Krieger
and
R.
Swanson
,
J. Appl. Phys.
54
,
3456
(
1983
).
13.
R.
Mertens
,
J. L.
van Meerbergern
,
J.
Nijs
, and
R.
van Overstraeten
,
IEEE Trans. Electron Devices
27
,
949
(
1980
).
14.
L.
Passari
and
E.
Susi
,
J. Appl. Phys.
54
,
3935
(
1983
).
15.
G.
Possin
,
M.
Adler
, and
B.
Baliga
,
IEEE Trans. Electron Devices
27
,
983
(
1980
).
16.
D.
Roulson
,
N.
Arora
, and
S.
Chamberlain
,
IEEE Trans. Electron Devices
29
,
284
(
1982
).
17.
W. W.
Seng
,
IEEE Trans. Electron Devices
22
,
25
(
1975
).
18.
H.
Weaver
and
R.
Nasby
,
IEEE Trans. Electron Devices
28
,
465
(
1981
).
19.
W.
Shockley
and
W.
Read
,
Phys. Rev.
87
,
835
(
1952
).
20.
R.
Hall
,
Phys. Rev.
87
,
387
(
1952
).
21.
J. G.
Fossum
and
D. S.
Lee
,
Solid-State Electron.
25
,
741
(
1982
).
22.
C.
Hu
and
W.
Oldham
,
Appl. Phys. Lett.
35
,
636
(
1979
).
23.
A.
Hang
,
J. Phys. C
21
,
L287
(
1988
).
24.
M.
Takeshima
,
Phys. Rev.
26
,
917
(
1982
).
25.
M.
Takeshima
,
Phys. Rev.
28
,
2039
(
1983
).
26.
Y.
Vaitkus
and
V.
Grivitskas
,
Sov. Phys. Semicond.
15
,
1102
(
1981
).
27.
P.
Landsberg
,
Solid-State Electron.
30
,
1107
(
1987
).
28.
K.
Betzler
and
R.
Conradt
,
Solid State Commun.
17
,
823
(
1975
).
29.
A.
Hangleiter
and
R.
Häcker
,
Phys. Rev. Lett.
65
,
215
(
1990
).
30.
R.
Häcker
and
A.
Hangleiter
,
J. Appl. Phys.
75
,
7570
(
1994
).
31.
A. R. Beattie and P. T. Landsberg, Proc. Phys. Soc. London, Sect. A 429, 16 (1958).
32.
N. F. Mott, Metal-insulator Transitions (Taylor and Francis, London, 1974).
33.
J.
Schmidt
and
A. G.
Aberle
,
J. Appl. Phys.
81
,
6186
(
1997
).
34.
H.
Schlangenotto
,
H.
Maeder
, and
W.
Gerlach
,
Phys. Status Solidi A
21
,
357
(
1974
).
35.
M. Schöfthaler, R. Brendel, G. Langguth, and J. Werner, 1st World Conference on Photovoltaic Energy Conversion, Waikaloa, HI, 1994, pp. 1509–1513.
36.
T.
Ciszek
,
T.
Wang
,
T.
Schuyler
, and
A.
Rohatgi
,
J. Electrochem. Soc.
136
,
230
(
1989
).
37.
A. Hangleiter (private communication, 1996).
38.
M. A. Green and P. P. Altermatt (unpublished).
39.
R. F. Häcker, Ph.D. thesis, University of Stuttgart, Germany, 1991.
40.
A.
Hangleiter
,
Phys. Rev. B
35
,
9149
(
1987
).
41.
A.
Hangleiter
,
Phys. Rev. B
37
,
2594
(
1988
).
42.
A. Hangleiter, Habilitation thesis, University of Stuttgart, Germany, 1992.
43.
D. B.
Laks
,
G. F.
Neumark
,
A.
Hangleiter
, and
S. T.
Pantelides
,
Phys. Rev. Lett.
61
,
1229
(
1988
).
44.
W.
Lochmann
and
A.
Haug
,
Solid State Commun.
35
,
553
(
1980
).
45.
F. J.
Morin
and
J. P.
Maita
,
Phys. Rev.
96
,
28
(
1954
).
46.
P.
Jonsson
,
H.
Bleichner
, and
E.
Nordlander
,
J. Appl. Phys.
81
,
2256
(
1997
).
47.
R.
Sinton
and
R.
Swanson
,
IEEE Trans. Electron Devices
34
,
1380
(
1987
).
48.
P. P.
Altermatt
,
G.
Heiser
,
X.
Dai
,
J.
Jürgens
,
A. G.
Aberle
,
S. J.
Robinsons
,
T.
Young
,
S. R.
Wenham
, and
M. A.
Green
,
J. Appl. Phys.
80
,
3574
(
1996
).
49.
P. A. Basore, Proceedings of the 20th IEEE Photovoltaic Specialists Conference, Las Vegas, NV, 1988, pp. 389–396.
50.
M. A.
Green
,
IEEE Trans. Electron Devices
31
,
671
(
1984
).
51.
T.
Tiedje
,
E.
Yablonovitch
,
G.
Cody
, and
B.
Brooks
,
IEEE Trans. Electron Devices
31
,
711
(
1984
).
52.
M. A. Green, Silicon Solar Cells: Advanced Principles and Practice (Bridge Printery, Sydney, Australia, 1995).
53.
J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green in Ref. 35, pp. 1477–1280.
54.
DESSIS 3.0: Manual (ISE Integrated Systems Engineering AG, Zurich, Switzerland, March 1996).
55.
P. P.
Altermatt
,
G.
Heiser
,
A. G.
Aberle
,
A.
Wang
,
J.
Zhao
,
S. J.
Robinson
,
S.
Bowden
, and
M. A.
Green
,
Prog. Photovolt.
4
,
399
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.