A variety of undoped (nonintrinsic) hydrogenated amorphous silicon (a-Si:H) thin films was studied in greater detail using steady-state photoconductivity, σph, subband-gap absorption, α(hν), steady-state photocarrier grating (SSPG), and electron-spin-resonance (ESR) techniques both in the annealed and stabilized light soaked states. The experimental results were self-consistently modeled using a detailed numerical analysis. It was found that large differences in the optoelectronic properties of device quality a-Si:H thin films can only be explained using a gap state distribution which consists of positively charged D+ defect states above the Fermi level, the neutral D0 defect states, and the negatively charged D defect states below the Fermi level. There are large differences both in the densities of neutral and charged defect states and R ratios in different a-Si:H films in the annealed state. The densities of both neutral and charged defect states increased, however, R ratios decreased in the stabilized light soaked state. Very good agreement was obtained between the densities of neutral defect states measured by ESR and those derived from the numerical analysis in the stabilized light soaked state. The kinetics of the Staebler–Wronski effect was also investigated. There was no direct correlation between the decrease of steady-state photoconductivity and increase of subband-gap absorption. The self-consistent fits to wide range of experimental results obtained with the three Gaussian distributions of charged defect states imply that this model is much better representation of the bulk defect states in undoped hydrogenated amorphous silicon thin films.

1.
D.
Adler
,
Sol. Cells
9
,
113
(
1983
).
2.
R. A.
Street
and
D. K.
Biegelsen
,
Solid State Commun.
33
,
1159
(
1980
).
3.
W. B.
Jackson
and
N. M.
Amer
,
Phys. Rev. B
25
,
5559
(
1982
).
4.
M.
Stutzmann
,
W. B.
Jackson
, and
C. C.
Tsai
,
Phys. Rev. B
32
,
23
(
1985
).
5.
D.
Redfield
and
R. H.
Bube
,
Appl. Phys. Lett.
54
,
1037
(
1989
);
in
Amorphous Silicon Materials and Solar Cells
, AIP Conf. Proc., Vol.
234
(
AIP
,
New York
,
1991
), p.
66
.
6.
T.
Shimizu
,
H.
Kidoh
,
X.
Xu
,
A.
Morimoto
, and
M.
Kumeda
,
Mater. Res. Soc. Symp. Proc.
118
,
665
(
1988
).
7.
J.
Ristein
,
J.
Hautala
, and
P. C.
Taylor
,
Phys. Rev. B
40
,
88
(
1989
).
8.
S.
Yamasaki
,
H.
Okushi
,
A.
Matsuda
, and
K.
Tanaka
,
Phys. Rev. Lett.
65
,
756
(
1990
).
9.
J.
Hautala
,
P. C.
Taylor
, and
J.
Ristein
, in
Amorphous Silicon Materials and Solar Cells
, AIP Conf. Proc., Vol.
234
(
AIP
,
New York
,
1991
), p.
170
.
10.
Z. M.
Saleh
,
H.
Tarui
,
S.
Tsuda
,
S.
Nakano
, and
Y.
Kuwano
,
Mater. Res. Soc. Symp. Proc.
258
,
359
(
1992
).
11.
G.
Schumm
,
W. B.
Jackson
, and
R. A.
Street
,
Phys. Rev. B
48
,
14
198
(
1993
).
12.
M.
Gunes
,
C. R.
Wronski
, and
T. J.
McMahon
,
J. Appl. Phys.
76
,
2260
(
1994
).
13.
M.
Gunes
,
R. W.
Collins
, and
C. R.
Wronski
,
Mater. Res. Soc. Symp. Proc.
336
,
413
(
1994
).
14.
S.
Lee
,
M.
Gunes
,
C. R.
Wronski
,
N.
Maley
, and
M.
Bennett
,
Appl. Phys. Lett.
59
,
1578
(
1991
).
15.
J. G.
Simmons
and
G. W.
Taylor
,
Phys. Rev. B
4
,
502
(
1971
).
16.
J. Tauce, in Optical Properties of Solids, edited by F. Abeles (North-Holland, New York, 1972), p. 279.
17.
S.
Lee
,
S.
Kumar
,
C. R.
Wronski
, and
N.
Maley
,
J. Non-Cryst. Solids
114
,
316
(
1989
).
18.
M. Gunes, Ph.D. thesis, The Pennsylvania State University, University Park, PA 16802, 1995.
19.
Z. E.
Smith
,
V.
Chu
,
K.
Shephard
,
S.
Aljishi
,
D.
Slobodin
,
J.
Kolodzey
,
S.
Wagner
, and
T. L.
Chu
,
Appl. Phys. Lett.
50
,
1521
(
1987
).
20.
Y.
Tang
and
R.
Braunstein
,
Appl. Phys. Lett.
66
,
721
(
1995
).
21.
M. Gunes, Y. M. Li, R. M. Dawson, C. M. Fortmann, and C. R. Wronski, in Proceedings of IEEE XIII Photovoltaic Specialists Conference (IEEE, New York, 1993), p. 885.
22.
M.
Gunes
and
C. R.
Wronski
,
Appl. Phys. Lett.
61
,
678
(
1992
).
23.
C. E.
Nebel
,
R. A.
Street
,
N. M.
Johnson
, and
J.
Walker
,
Mater. Res. Soc. Symp. Proc.
297
,
97
(
1993
).
24.
I.
Balberg
,
Mater. Res. Soc. Symp. Proc.
258
,
693
(
1992
), and references therein.
25.
D. L.
Staebler
and
C. R.
Wronski
,
Appl. Phys. Lett.
31
,
292
(
1977
).
26.
H.
Dersch
,
J.
Stuke
, and
J.
Beichler
,
Appl. Phys. Lett.
38
,
456
(
1980
).
27.
P. V.
Santos
,
W. B.
Jackson
, and
R. A.
Street
, in
Amorphous Silicon Materials and Solar Cells
, AIP Conf. Proc., Vol.
234
(
AIP
,
New York
,
1991
), p.
51
.
28.
C. R. Wronski, in Semiconductors and Semimetals, edited by J. Pankove (Academic, New York, 1984), Vol. 21, Part C, p. 347.
29.
H.
Branz
and
M.
Silver
,
Phys. Rev. B
42
,
7420
(
1990
).
30.
J.
Isoya
,
S.
Yamasaki
,
H.
Okushi
,
A.
Matsuda
, and
K.
Tanaka
,
Phys. Rev. B
47
,
7013
(
1993
).
31.
S.
Yamasaki
and
J.
Isoya
,
J. Non-Cryst. Solids
164–166
,
169
(
1993
).
32.
A. Rose Concepts in Photoconductivity and Allied Problems (Wiley, New York, 1963).
33.
J.
Takada
and
H.
Fritzche
,
Mater. Res. Soc. Symp. Proc.
95
,
571
(
1987
).
34.
D.
Han
,
D. C.
Melcher
,
E. A.
Schiff
,
M.
Silver
,
Phys. Rev. B
48
,
8658
(
1993
).
35.
M. J.
Powell
and
S. C.
Dean
,
Phys. Rev. B
48
,
10
815
(
1993
).
36.
H. M.
Branz
,
Phys. Rev. B
41
,
7887
(
1990
).
37.
G.
Schumm
and
G. H.
Bauer
,
J. Non-Cryst. Solids
137&138
,
315
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.