Self-aligned silicidation is a well-known process to reduce source, drain, and gate resistances of submicron metal-oxide-semiconductor devices. This process is particularly useful for devices built on very thin Si layers (∼1000 Å or less) on insulators because of the large source and drain resistances associated with the thin Si layer. NiSi is a good candidate for salicidation process due to its low resistivity, low formation temperature, little silicon consumption, and large stable processing temperature window. In this article, the formation of nickel mono-silicide (NiSi) using rapid thermal annealing, the thermal stability of NiSi on n+ poly-Si and the contact resistance of NiSi on n+ Si layers in a SIMOX structure were investigated. NiSi salicidation process was, then, incorporated into a NMOS/SIMOX device fabrication for partial and full consumption of the Si in the source and drain regions during the salicidation process. The effects of void formation and silicide encroachment on the device performance were also studied.

1.
S. P.
Murarka
,
J. Vac. Sci. Technol. B
4
,
1325
(
1986
).
2.
C. M.
Osburn
,
Q. F.
Wang
,
M.
Kellam
,
C.
Canovai
,
P. L.
Smith
,
G. E.
McGuire
,
Z. G.
Xiao
, and
G. A.
Rozgonyi
,
Appl. Surf. Sci.
53
,
291
(
1991
).
3.
K. Maex, Mater. Sci. Eng. R11, 53 (1993).
4.
L. Van den hove, Ph.D. thesis, University of Leuven, Belgium, 1988.
5.
J. B.
Lasky
,
J. S.
Nakos
,
O. J.
Cain
, and
P. J.
Geiss
,
IEEE Trans. Electron Devices
ED-38
,
262
(
1991
).
6.
H.
Jeon
,
C. A.
Sukow
,
J. W.
Honeycutt
,
G. A.
Rozgonyi
, and
R. J.
Nemanich
,
J. Appl. Phys.
71
,
4269
(
1992
).
7.
T.
Morimoto
,
T.
Ohguro
,
H. S.
Momose
,
T.
Iinuma
,
I.
Kunishima
,
K.
Suguro
,
I.
Katakabe
,
H.
Nakajima
,
M.
Tsuchiaki
,
M.
Ono
,
Y.
Katsumata
, and
H.
Iwai
,
IEEE Trans. Electron Devices
ED-42
,
915
(
1995
).
8.
P. X.
Xu
,
S. R.
Das
,
J. P.
McCaffrey
,
C. J.
Peters
,
L. E.
Erickson
,
Mater. Res. Soc. Symp. Proc.
402
,
59
(
1995
).
9.
M.-A. Nicolet and S. S. Lau, in VLSI Electronics Microstructure Science, edited by N. G. Einspruch and G. B. Larrabee (Academic, New York, 1983), pp. 329.
10.
S. P. Murarka, Silicides for VLSI Applications (Academic, New York, 1983).
11.
E. G. Colgan, J. P. Gambino, and Q. Z. Hong, Mater. Sci. Eng. R16, 43 (1996).
12.
Q. Z.
Hong
,
S. Q.
Hong
,
F. M.
d’Heurle
, and
J. M. E.
Harper
,
Thin Solid Films
253
,
479
(
1994
).
13.
Y.
Taur
,
J. Y. C.
Sun
,
D.
Moy
,
L. K.
Wang
,
B.
Davari
,
S. P.
Klepner
, and
C. Y.
Ting
,
IEEE Trans. Electron Devices
ED-34
,
575
(
1987
).
14.
Calculation performed using the software TRIM-90 version 6.0, as described in J. F. Ziegler, J. P. Biersack, and U. Littmark, The stopping Range of Ions in Matter (Pergamon, New York, 1985).
15.
M.
Finetti
,
S.
Guerri
,
P.
Negrini
,
A.
Scorzoni
, and
I.
Suni
,
Thin Solid Films
130
,
37
(
1985
).
16.
J. M. Hwang, E. Yee, T. Houston, and G. P. Pollack, Proceedings of 1993 IEEE International SOI Conferences, 1993, pp. 132–133.
17.
P. H. Woerlee, C. Juffermans, H. Lifka, W. Manders, F. M. Oude Lansink, G. M. Paulzen, P. Sheridan, and A. Walker, IEDM Technical Digest 90-583.
18.
L. J.
McDaid
,
S.
Hall
,
W.
Eccleston
, and
J. C.
Alderman
,
Electron. Lett.
27
,
1003
(
1991
).
19.
F. Deng, R. A. Johnson, W. B. Dubbelday, G. A. Garcia, P. M. Asbeck, and S. S. Lau, Proceedings of 1996 IEEE International SOI Conferences, 1996, pp. 78–79.
20.
M. P.
Lepselter
and
S. M.
Sze
,
Proc. IEEE
1400–1402
, (
1968
).
21.
M.
Sugino
,
L. A.
Akers
, and
M. E.
Rebeschini
,
IEEE Trans. Electron Devices
ED-30
,
110
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.