Direct and Fowler-Nordheim tunneling through ultra-thin gate dielectrics is modeled based on an approach for the transmission coefficient (TC) of a potential barrier that is modified by the image force. Under the constraint of equal actions the true barrier is mapped to a trapezoidal pseudobarrier resulting in a TC very close to the numerical solution of the Schrödinger equation for all insulator thicknesses and for all energies of the tunneling electron. The barrier height of the pseudopotential is used as a free parameter and becomes a function of energy in balancing the actions. This function can be approximated by a parabolic relation which makes the TC of arbitrary barriers fully analytical with little loss of accuracy. The model was implemented into a multidimensional device simulator and applied to the self-consistent simulation of gate currents in metal-oxide-semiconductor (MOS) capacitors with gate oxides in the thickness range 15 Å–42 Å. Excellent agreement with experimental data was obtained using a thickness-independent tunnel mass mox=0.42 m0. Thanks to the CPU-time efficiency of the method the simulation of a complete MOS-field-effect-transistor with dominating gate current becomes possible and shows the potential for further applications.

1.
D. J.
DiMaria
and
E.
Cartier
,
J. Appl. Phys.
78
,
3883
(
1995
).
2.
Q. D. M.
Khosru
,
N.
Yasuda
,
K.
Taniguchi
, and
C.
Hamaguchi
,
J. Appl. Phys.
77
,
4494
(
1995
).
3.
R. B.
Sethi
,
U. S.
Kim
,
I.
Johnson
,
P.
Cacharelis
, and
M.
Manley
,
IEEE Electron Device Lett.
13
,
244
(
1992
).
4.
M. A.
Green
,
F. D.
King
, and
J.
Shewchun
,
Solid-State Electron.
17
,
551
(
1974
).
5.
V. A. K.
Temple
,
M. A.
Green
, and
J.
Shewchun
,
J. Appl. Phys.
45
,
4934
(
1974
).
6.
J.
Shewchun
,
R.
Singh
, and
M. A.
Green
,
J. Appl. Phys.
48
,
765
(
1977
).
7.
M. Y.
Doghish
and
F. D.
Ho
,
IEEE Trans. Electron Devices
ED-39
,
2771
(
1992
).
8.
S.
Banerjee
,
D.
Coleman
, Jr.
,
W.
Richardson
, and
A.
Shah
,
IEEE Trans. Electron Devices
ED-35
,
108
(
1988
).
9.
M.
Herrmann
and
A.
Schenk
,
J. Appl. Phys.
77
,
4522
(
1995
).
10.
R. H.
Fowler
and
l.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
).
11.
L. W.
Nordheim
,
Proc. R. Soc. London, Ser. A
121
,
626
(
1928
).
12.
K. H.
Gundlach
,
Solid-State Electron.
9
,
949
(
1966
).
13.
J.
Maserjian
,
J. Vac. Sci. Technol.
11
,
996
(
1974
).
14.
B.
Majkusiak
and
A.
Strojwas
,
J. Appl. Phys.
74
,
5638
(
1993
).
15.
H. S.
Momose
,
M.
Ono
,
T.
Yoshitomi
,
T.
Ohguro
,
S.
Nakamura
,
M.
Saito
, and
H.
Iwai
,
IEEE Trans. Electron Devices
43
,
1233
(
1996
).
16.
S.
Nagano
,
M.
Tsukiji
,
K.
Ando
,
E.
Hasegawa
, and
A.
Ishitani
,
J. Appl. Phys.
75
,
3530
(
1994
).
17.
M. Matsuda, K. Watanabe, M. Yasutake, and T. Hattori, Proceedings of the International Conference on Solid State Devices and Materials, Osaka, Japan, 1995.
18.
S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
19.
P. Hesto, in: Instabilities in Silicon Devices, edited by G. Barbottin and A. Vapaille (Elsevier Science, Amsterdam, 1986), p. 265.
20.
J.
Bardeen
,
Phys. Rev. Lett.
6
,
57
(
1961
).
21.
P. J.
Price
and
J. M.
Radcliffe
,
IBM J. Res. Dev.
October
,
364
(
1959
).
22.
W. A.
Harrison
,
Phys. Rev.
123
,
85
(
1961
).
23.
R.
Stratton
,
J. Phys. Chem. Solids
23
,
1177
(
1962
).
24.
W.
Pötz
,
J. Appl. Phys.
66
,
2458
(
1989
).
25.
Z. A.
Weinberg
and
A.
Hartstein
,
Solid State Commun.
20
,
179
(
1976
).
26.
A.
Hartstein
and
Z. A.
Weinberg
,
J. Phys. C
11
,
L469
(
1978
).
27.
A.
Hartstein
and
Z. A.
Weinberg
,
Phys. Rev. B
20
,
1335
(
1979
).
28.
A.
Hartstein
,
Z. A.
Weinberg
, and
D. J.
DiMaria
,
Phys. Rev. B
25
,
7174
(
1982
).
29.
M. Jonson, Quantum Transport in Semiconductors, edited by D. K. Ferry and C. Jacoboni (Plenum, New York, 1992), p. 193.
30.
A.
Puri
and
W. L.
Schaich
,
Phys. Rev. B
28
,
1781
(
1983
).
31.
G.
Binnig
,
N.
Garcia
,
H.
Rohrer
,
J. M.
Soler
, and
F.
Flores
,
Phys. Rev. B
30
,
4816
(
1984
).
32.
P. A.
Serena
,
J. M.
Soler
, and
N.
Garcia
,
Phys. Rev. B
34
,
6767
(
1986
).
33.
F.
Stern
,
Phys. Rev. B
17
,
5009
(
1978
).
34.
M.
Kleefstra
and
G. C.
Herman
,
J. Appl. Phys.
51
,
4923
(
1980
).
35.
B. E.
Deal
,
E. H.
Snow
, and
C. A.
Mead
,
J. Phys. Chem. Solids
27
,
1873
(
1966
).
36.
G.
Jin
,
R. W.
Dutton
,
Y.-J.
Park
, and
H.-S.
Min
,
J. Appl. Phys.
78
,
3174
(
1995
).
37.
T. H.
Ning
,
Solid-State Electron.
21
,
273
(
1978
).
38.
K.
Kobayashi
,
A.
Teramoto
,
M.
Hirayama
, and
Y.
Fujita
,
J. Appl. Phys.
77
,
3277
(
1995
).
39.
M.
Lenzlinger
and
E. H.
Snow
,
J. Appl. Phys.
40
,
278
(
1969
).
40.
M.
Av-Ron
,
M.
Shatzkes
,
T. H.
DiStefano
, and
R. A.
Gdula
,
J. Appl. Phys.
52
,
2897
(
1981
).
41.
G.
Krieger
and
R. M.
Swanson
,
J. Appl. Phys.
52
,
5710
(
1981
).
42.
W. Franz, Handbook on Semiconductors, edited by S. Flügge (Springer, Berlin, 1956), Vol. 17, p. 155.
43.
Z. A.
Weinberg
,
J. Appl. Phys.
53
,
5052
(
1982
).
44.
Z. A.
Weinberg
,
Solid-State Electron.
22
,
11
(
1977
).
45.
J. R.
Chelikowsky
and
M.
Schlüter
,
Phys. Rev. B
15
,
4020
(
1977
).
46.
P. V.
Dressendorfer
and
R. C.
Barker
,
Appl. Phys. Lett.
36
,
933
(
1980
).
47.
M. Hiroshima, T. Yasaka, S. Miyazaki, and M. Hirose, Proceedings of the International Conference on Solid State Devices and Materials, Makuhari, Japan, 1993.
48.
S. Heike, Y. Wada, S. Kondo, and M. Lutwyche, Proceedings of the International Conference on Solid State Devices and Materials, Japan, 1994.
49.
J. L. Alay, M. Fukuda, K. Nakagawa, S. Yokohama, and M. Hirose, in Ref. 17.
50.
Z. A.
Weinberg
and
A.
Hartstein
,
J. Appl. Phys.
54
,
2517
(
1983
).
51.
M. V.
Fischetti
,
S. E.
Laux
, and
E.
Crabbé
,
J. Appl. Phys.
78
,
1058
(
1995
).
52.
DESSIS 3.0: manual, ISE Integrated Systems Engineering AG, Zurich, Switzerland, 1996.
53.
A.
Schenk
,
Solid-State Electron.
35
,
1585
(
1992
).
54.
M.
Depas
,
B.
Vermeire
,
P. W.
Mertens
,
R. L.
van Meirhaeghe
, and
M. M.
Heyns
,
Solid-State Electron.
38
,
1465
(
1995
).
55.
F.
Stern
and
W. E.
Howard
,
Phys. Rev.
163
,
816
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.