A methodology is introduced for predicting the effective thermal conductivity of arbitrary particulate composites with interfacial thermal resistance in terms of an effective medium approach combined with the essential concept of Kapitza thermal contact resistance. Results of the present model are compared to existing models and available experimental results. The proposed approach rediscovers the existing theoretical results for simple limiting cases. The comparisons between the predicted and experimental results of particulate diamond reinforced ZnS matrix and cordierite matrix composites and the particulate SiC reinforced Al matrix composite show good agreement. Numerical calculations of these different sets of composites show very interesting predictions concerning the effects of the particle shape and size and the interfacial thermal resistance.

1.
Z.
Hashin
,
J. Appl. Mech.
50
,
481
(
1983
).
2.
S.
Torquato
,
Appl. Mech. Rev.
44
,
37
(
1991
).
3.
D. J.
Bergman
and
D.
Stroud
,
Solid State Phys.
46
,
147
(
1992
).
4.
C.-W.
Nan
,
Prog. Mater. Sci.
37
,
1
(
1993
).
5.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
6.
P. L.
Kapitza
,
J. Phys. (Moscow)
4
,
181
(
1941
).
7.
H.
Bhatt
,
K. Y.
Donaldson
,
D. P. H.
Hasselman
, and
R. T.
Bhatt
,
J. Am. Ceram. Soc.
73
,
312
(
1990
).
8.
D. P. H.
Hasselman
,
A.
Venkateswaran
,
M.
Yu
, and
H.
Tawil
,
J. Am. Ceram. Soc.
74
,
1631
(
1991
).
9.
D. P. H.
Hasselman
,
K. Y.
Donaldson
, and
A. L.
Geiger
,
J. Am. Ceram. Soc.
75
,
3137
(
1992
).
10.
A. L.
Geiger
,
D. P. H.
Hasselman
, and
K. Y.
Donaldson
,
J. Mater. Sci. Lett.
12
,
420
(
1993
).
11.
A. G.
Every
,
Y.
Tzou
,
D. P. H.
Hasselman
, and
R.
Raj
,
Acta Metall. Mater.
40
,
123
(
1992
).
12.
D. P. H.
Hasselman
,
K. Y.
Donaldson
,
J.
Liu
,
L. J.
Gauckler
, and
P. D.
Ownby
,
J. Am. Ceram. Soc.
77
,
1757
(
1994
).
13.
D. P. H.
Hasselman
,
K. Y.
Donaldson
,
J. R.
Thomas
, Jr.
, and
J. J.
Brennan
,
J. Am. Ceram. Soc.
79
,
742
(
1996
).
14.
D. M.
Liu
and
W. H.
Tuan
,
Acta Metall. Mater.
44
,
813
(
1996
).
15.
D. P. H.
Hasselman
and
L. F.
Johnson
,
J. Compos. Mater.
21
,
508
(
1987
).
16.
Y.
Benvensite
,
J. Appl. Phys.
61
,
2840
(
1987
).
17.
J. C. Maxwell (Pergamon, Oxford, 1904), Vol. 1.
18.
Lord
Rayleigh
,
Philos. Mag.
34
,
481
(
1892
).
19.
D. A. G. Bruggeman, Ann. Phys. (Leipeig), 24, 636 (1935).
20.
L. C.
Davis
and
B. E.
Artz
,
J. Appl. Phys.
77
,
4954
(
1995
).
21.
H.
Hatta
and
M.
Taya
,
J. Appl. Phys.
59
,
1851
(
1986
).
22.
Y.
Benveniste
and
T.
Miloh
,
Int. J. Eng. Sci.
24
,
1537
(
1986
);
Y.
Benveniste
and
T.
Miloh
,
J. Appl. Phys.
69
,
1337
(
1991
).
23.
M. L.
Dunn
and
M.
Taya
,
J. Appl. Phys.
73
,
1711
(
1993
).
24.
T.
Mori
and
K.
Tanaka
,
Acta. Metall.
21
,
571
(
1973
).
25.
S.
Torquato
and
M. D.
Rintoul
,
Phys. Rev. Lett.
75
,
4067
(
1995
).
26.
(a)
R.
Lipton
and
B.
Vernescu
,
Proc. R. Soc. London, Ser. A
452
,
329
(
1996
);
(b)
R.
Lipton
and
B.
Vernescu
,
J. Appl. Phys.
79
,
8964
(
1996
).
27.
J. E.
Gubernatis
and
J. A.
Krumhansl
,
J. Appl. Phys.
46
,
1875
(
1975
).
28.
C.-W.
Nan
,
J. Appl. Phys.
76
,
1155
(
1994
).
29.
For comparison, in the present calculations we use a unified dimensionless parameter α defined by α=ak/a where a is the radius of an equivalent spherical particle having the same volume as the ellipsoidal one under consideration, i.e., a3=a12a3.
This content is only available via PDF.
You do not currently have access to this content.