Hydrogenated microcrystalline silicon (μc‐Si:H) deposited by VHF plasma‐enhanced chemical vapor deposition has recently been proven to be fully stable, with respect to light‐induced degradation, when adequately used in pin solar cells. Stable solar cells efficiencies of 7.7% have been obtained with single‐junction cells, using ‘‘midgap’’ microcrystalline i‐layers, having an optical gap of around 1 eV. In the present paper, the electronic transport properties of such microcrystalline layers are determined, by the steady‐state photocarrier grating method (SSPG) and steady‐state photoconductivity measurements, in a coplanar configuration. The conditions for the validity of the procedure for determining the ambipolar diffusion length, Lamb, from SSPG measurements (as previously theoretically derived in the context of amorphous silicon) are carefully re‐examined and found to hold in these μc‐Si:H layers, taking certain additional precautions. Otherwise, e.g., the prevalence of the ‘‘lifetime’’ regime (as opposed to the ‘‘relaxation time’’ regime) becomes questionable, in sharp contrast with the case of amorphous semiconductors, where this condition is almost never a problem. For the best layers measured so far, Lamb is about twice as high and the photoconductivity σphoto four times as high in μc‐Si:H, when compared to device quality a‐Si:H. Until now, the highest values of Lamb found by the authors for μc‐Si:H layers are around 3×10−5 cm.

1.
J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, and A. Shah, Proceedings of the First WCPEC and by the Swiss Federal Renewable Energy Program [EF-REN(93)032], Hawaii, 1994 (IEEE Inc., 1995), p. 409.
2.
J. Meier, P. Torres, R. Platz, S. Dubail, U. Kroll, J. A. Anna Selvan, N. Pellaton Vaucher, C. Hof, D. Fischer, H. Keppner, A. Shah, K.-D. Ufert, P. Giannoulès, and J. Koehler, Mater. Res. Soc. Symp. Proc., Vol. 420 (to be published).
3.
N.
Beck
,
J.
Meier
,
J.
Fric
,
Z.
Remĕs
,
A.
Poruba
,
R.
Flückiger
,
J.
Pohl
,
A.
Shah
, and
M.
Vanĕc̆ek
,
J. Non-Cryst. Solids
198–200
,
903
(
1996
).
4.
S. M.
Cho
,
S. S.
He
, and
G.
Lucovsky
,
Mater. Res. Soc. Symp. Proc.
336
,
583
(
1994
).
5.
F. Wang, R. Schwarz, S. Grebner, H. N. Liu, Y. L. He, and C. Z. Yin, Proceedings of the 21st ICPS, Beijing, 1992, p. 2008.
6.
I.
Balberg
,
Mater. Res. Soc. Symp. Proc.
258
,
693
(
1992
).
7.
D.
Ritter
,
K.
Weiser
, and
E.
Zeldov
,
J. Appl. Phys.
62
,
4563
(
1987
).
8.
S. M. Sze, Physics of Semiconductor Devices, 2nd ed., published by Mohinder Singh Sejwal (Wiley Eastern Limited, New Dehli, 1983), p. 31.
9.
A.
Shah
,
E.
Sauvain
, and
J.
Hubin
,
J. Non-Cryst. Solids
114
,
402
(
1989
).
10.
P.
Pipoz
,
E.
Sauvain
,
J.
Hubin
, and
A.
Shah
,
Mater. Res. Soc. Symp. Proc.
258
,
777
(
1992
).
11.
J.
Hubin
,
A. V.
Shah
,
E.
Sauvain
, and
P.
Pipoz
,
J. Appl. Phys.
78
,
6050
(
1995
).
12.
E. Sauvain, Ph.D. thesis, Université de Neuchâtel, 1992.
13.
H.
Curtins
,
N.
Wyrsch
,
M.
Favre
, and
A. V.
Shah
,
Plasma Chem. Plasma Process.
7
,
267
(
1987
).
14.
J.
Meier
,
R.
Flückiger
,
H.
Keppner
, and
A.
Shah
,
Appl. Phys. Lett.
65
,
860
(
1994
).
15.
P.
Torres
,
J.
Meier
,
R.
Flückiger
,
U.
Kroll
,
J. A.
Anna Selvan
,
H.
Keppner
,
A.
Shah
,
S. D.
Littelwood
,
I. E.
Kelly
, and
P.
Giannoulès
,
Appl. Phys. Lett.
69
(in press,
1996
).
16.
M.
Haridim
,
K.
Weiser
, and
H.
Mell
,
Philos. Mag. B
67
,
171
(
1993
).
17.
E. Sauvain, A. Shah, and J. Hubin, Proceedings of the 21st IEEE Photovoltaic Specialists Conference, Kissimmee, Florida, 1990 (IEEE), p. 1560.
18.
N. Beck, A. Shah, and N. Wyrsch, Proceedings of the First WCPEC, Hawaii, 1994 (IEEE), p. 476.
19.
R.
Flückiger
,
J.
Meier
,
M.
Goetz
, and
A.
Shah
,
J. Appl. Phys.
77
,
712
(
1995
).
20.
N. Wyrsch, M. Goerlitzer, N. Beck, J. Meier, and A. Shah, Mater. Res. Soc. Symp. Proc., Vol. 420 (to be published).
21.
A.
Goodman
,
J. Appl. Phys.
32
,
2550
(
1961
).
22.
A. R.
Moore
,
J. Appl. Phys.
54
,
222
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.