The impact ionization rate in ZnS is calculated using a nonlocal empirical pseudopotential band structure and compared to previous results using a local calculation. The two resulting rates are then compared and simple fit formulas are presented. These are included in an ensemble Monte Carlo simulation of electron transport in bulk ZnS. The calculated impact ionization rate is then compared to experimental impact ionization coefficient data; reasonable agreement between the experimental data and the calculated impact ionization rate is obtained with an appropriate choice of optical deformation potentials.

1.
Quantum Transport in Semiconductors, edited by C. Jacoboni, L. Reggiani, and D. K. Ferry (Plenum, New York, 1992).
2.
Y. A. Ono, Electroluminescent Displays (World Scientific, Singapore, 1995).
3.
W. M.
Ang
,
S. S.
Pennathur
,
L.
Pham
,
J. F.
Wager
,
S. M.
Goodnick
, and
A. A.
Douglas
,
J. Appl. Phys.
77
,
2719
(
1995
).
4.
M.
Reigrotzki
,
M.
Stobbe
,
R.
Redmer
, and
W.
Schattke
,
Phys. Rev. B
52
,
1456
(
1995
).
5.
J. R.
Chelikowsky
and
M. L.
Cohen
,
Phys. Rev. B
14
,
556
(
1976
).
6.
M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors (Springer, Berlin, 1988), p. 142.
7.
S. S. Pennathur, Ph. D thesis, Oregon State University, Corvallis, 1995.
8.
J. P.
Walter
and
M. L.
Cohen
,
Phys. Rev.
183
,
763
(
1969
).
9.
J. Barth, R. L. Johnson, and M. L. Cardona, Handbook of Optical Constants of Solids II (Academic, Boston, 1991), p. 213.
10.
J.
Bude
and
K.
Hess
,
J. Appl. Phys.
72
,
3554
(
1992
).
11.
N.
Sano
and
A.
Yoshii
,
Phys. Rev. B
45
,
4171
(
1992
).
12.
M.
Stobbe
,
R.
Redmer
, and
W.
Schattke
,
Phys. Rev. B
47
,
4494
(
1994
).
13.
N.
Sano
and
A.
Yoshii
,
J. Appl. Phys.
75
,
5102
(
1994
).
14.
Y.
Wang
and
K.
Brennan
,
J. Appl. Phys.
71
,
2736
(
1992
).
15.
The analytical approaches are reviewed by
D. J.
Robbins
,
Phys. Status Solidi B
97
,
9
(
1980
).
16.
W.
Quade
,
E.
Schöll
,
F.
Rossi
, and
C.
Jacoboni
,
Phys. Rev. B
50
,
7398
(
1994
).
17.
D. B.
Laks
,
G. F.
Neumark
,
A.
Hangleiter
, and
S. T.
Pantelides
,
Phys. Rev. Lett.
61
,
1229
(
1988
).
18.
Z. H.
Levine
and
S. G.
Louie
,
Phys. Rev. B
25
,
6310
(
1982
);
see also
M.S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. Lett.
55
,
1418
(
1985
);
M.S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. B
34
,
5390
(
1986
).
19.
P.-O.
Löwdin
,
J. Chem. Phys.
19
,
1396
(
1951
).
20.
J.
Bude
,
K.
Hess
, and
G. J.
Iafrate
,
Phys. Rev. B
45
,
10
958
(
1992
).
21.
K.
Král
,
Phys. Rev. B
50
,
7988
(
1994
).
22.
K.
Kim
,
K.
Kahen
,
J. P.
Leburton
, and
K.
Hess
,
J. Appl. Phys.
59
,
2595
(
1986
).
23.
Y.
Kamakura
,
J. Appl. Phys.
75
,
3500
(
1994
).
24.
C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, Berlin, 1989).
25.
K.
Bhattacharyya
,
S. M.
Goodnick
, and
J. F.
Wager
,
J. Appl. Phys.
73
,
3390
(
1993
).
26.
Monte Carlo Device Simulation: Full Band and Beyond, edited by K. Hess (Kluwer, Boston, 1991).
27.
K.
Brennan
,
J. Appl. Phys.
64
,
4024
(
1988
).
28.
S. S. Pennathur, K. Bhattacharyya, S. M. Goodnick, and J. F. Wager, in Proceedings of the 3rd International Workshop on Computational Electronics, edited by S. M. Goodnick (Oregon State University Press, Corvallis, 1994), pp. 288–291.
29.
T. D.
Thompson
and
J. W.
Allen
,
J. Phys. C
20
,
L499
(
1987
).
30.
P. D.
Yoder
,
P. D.
Natoli
, and
R. M.
Martin
,
J. Appl. Phys.
73
,
4378
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.