We present computer simulation data for the effective permittivity (in the quasistatic limit) of a system composed of discrete inhomogeneities of permittivity ε1, embedded in a three‐dimensional homogeneous matrix of permittivity ε2. The primary purpose of this paper is to study the related issue of the effect of the geometric shape of the components on the dielectric properties of the medium. The secondary purpose is to analyse how the spatial arrangement in these two‐phase materials affects the effective permittivity. The structures considered are periodic lattices of inhomogeneities. The numerical method proceeds by an algorithm based upon the resolution of boundary integral equations. Finally, we compare the prediction of our numerical simulation with the effective medium approach and with results of previous analytical works and numerical experiments.

1.
D. J. Bergman and D. Stroud, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, New York, 1992), Vol. 46, pp. 178–320.
We also refer to the Proceedings of the Second International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media [
Physica A
157
(
1989
)].
2.
J. P.
Clerc
,
G.
Giraud
,
J. M.
Laugier
, and
J. M.
Luck
,
Adv. Phys.
39
,
191
(
1990
).
3.
R. Landauer, in Electrical Transport Optical Properties of Inhomogeneous Media (Ohio State University Press, Columbus, OH, 1977);
Proceedings of the First Conference on the Electrical and Optical Properties of Inhomogeneous Media, AIP Conf. No. 40, edited by J. C. Garland and D. B. Tanner (AIP, New York, 1978), p. 2;
See also
P. S.
Neelakanta
,
Electron. Lett.
25
,
800
(
1989
).
4.
A. H. Sihvola and I. V. Lindell, in Dielectric Properties of Heterogeneous Materials, edited by A. Priou (Elsevier, New York, 1992), p. 101.
5.
R. C.
McPhedran
and
D. R.
McKenzie
,
Proc. R. Soc. London Ser. A
359
,
45
(
1978
).
6.
R. I.
Cukier
,
S. Y.
Sheu
, and
J.
Tobochik
,
Phys. Rev. B
42
,
5342
(
1990
);
see also
S. Y.
Sheu
,
S.
Kumar
, and
R. I.
Cukier
,
Phys. Rev. B
42
,
1431
(
1990
).,
Phys. Rev. B
7.
L. M.
Schwartz
and
J. R.
Banavar
,
Physica A (Amsterdam)
157
,
230
(
1989
);
L. M.
Schwartz
and
J. R.
Banavar
, see also
Phys. Rev. B
39
,
11965
(
1989
).
8.
R.
Tao
,
Z.
Chen
, and
P.
Sheng
,
Phys. Rev. B
41
,
2417
(
1989
).
9.
S.
Torquato
and
F.
Lado
,
Phys. Rev. B
33
,
3370
(
1986
);
S.
Torquato
and
F.
Lado
,
33
,
5428
(
1988
).,
Phys. Rev. B
10.
G. N.
Milton
,
R. C.
McPhedran
, and
D. R.
McKenzie
,
Appl. Phys.
25
,
23
(
1981
).
11.
B. U.
Felderhof
,
G. W.
Ford
, and
E. G. D.
Cohen
,
J. Stat. Phys.
28
,
135
(
1982
);
B. U.
Felderhof
,
G. W.
Ford
, and
E. G. D.
Cohen
,
28
,
649
(
1982
).,
J. Stat. Phys.
12.
W.
Doyle
,
J. Appl. Phys.
49
,
795
(
1978
).
13.
L. K. H. Van Beek, Progress in Dielectrics (Heywood, London, 1967), Vol. 7, p. 69.
14.
W. R.
Tinga
,
W. A. G.
Voss
, and
D. F.
Blossey
,
J. Appl. Phys.
44
,
3897
(
1973
).
15.
D. J.
Bergman
and
Y.
Imry
,
Phys. Rev. Lett.
39
,
1222
(
1977
).
16.
D. A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
636
(
1935
).
17.
L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).
18.
P. K.
Ghosh
and
M. E.
Azimi
,
IEEE Trans. Dielect.
1
,
975
(
1994
).
19.
L. Krähenbühl, Ph.D. thesis, Ecole Centrale de Lyon, France, 1983.
20.
C. A. Brebbia, The Boundary Element Method for Engineers (Pentech, London, 1980).
21.
L. C.
Shen
,
C.
Liu
,
J.
Korringa
, and
K. J.
Dunn
,
J. Appl. Phys.
67
,
7071
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.