Magnetization measurements of the critical current density Jc in Nb 47 wt % Ti with Nb artificial pinning centers revealed that the shape and magnitude of the field dependent magnetization hysteresis ΔM(H) was a strong function of the sample length and that ΔM(H) for short wire samples was up to six times smaller than for long wires. This is caused by the strong anisotropy of the critical current density Jc. The magnitude of Jc flowing perpendicular to the wire axis J was deduced to be 50–175 times smaller than the longitudinal current density J. The source of the anisotropy lies in the anisotropic flux pinning microstructure of the wires. When the magnetization current crosses perpendicular to the filament axis at each end of the wire, the Lorentz force is parallel to the pinning center axis. The pinning force is weak in this direction and J is correspondingly small. The technologically important critical current density is the longitudinal current density J. It can be extracted from magnetization measurements only in the case of large length to diameter filaments, as is quantitatively analyzed here.

1.
K.
Matsumoto
,
H.
Takewasi
,
Y.
Tanaka
,
O.
Miura
,
K.
Yamafuji
,
K.
Funaki
,
M.
Iwakuna
, and
T.
Matsushita
,
Appl. Phys. Lett.
64
,
115
(
1994
).
2.
L. R.
Motowidlo
,
B. A.
Zeitlin
,
M. S.
Walker
, and
P.
Haldar
,
Appl. Phys. Lett.
61
,
991
(
1992
).
3.
R. W.
Heussner
,
P. D.
Jablonski
,
P. J.
Lee
, and
D. C.
Larbalestier
,
IEEE Trans. Appl. Supercond.
5
,
1705
(
1995
).
4.
C. P.
Bean
,
Rev. Mod. Phys.
36
,
31
(
1964
).
5.
M. D.
Sumption
and
E. W.
Collings
,
Cryogenics
34
,
491
(
1994
).
6.
R. B.
Goldfarb
and
K.
Itoh
,
J. Appl. Phys.
75
,
2115
(
1994
).
7.
K. J.
Best
,
D.
Genevey
,
H.
Hillmann
,
L.
Krempasky
,
M.
Polak
, and
B.
Turck
,
IEEE Trans. Magn.
15
,
395
(
1979
).
8.
K. J.
Best
,
D.
Genevey
,
H.
Hillmann
,
L.
Krempasky
,
M.
Polak
, and
B.
Turck
,
IEEE Trans. Magn.
15
,
765
(
1979
).
9.
L. D.
Cooley
,
P.
Jablonski
,
P. J.
Lee
, and
D. C.
Larbalestier
,
Appl. Phys. Lett.
58
,
2984
(
1991
).
10.
H.
Küpfer
and
T.
Matsushita
,
J. Appl. Phys.
63
,
5060
(
1988
).
11.
M.
Sumption
,
Appl. Supercond.
2
,
41
(
1994
).
12.
L. D.
Cooley
,
P. J.
Lee
, and
D. C.
Larbalestier
,
IEEE Trans. Magn.
27
,
1096
(
1991
).
13.
C.
Bormio Nunes
and
D. G.
Pinatti
,
Physica B
194–196
,
1817
(
1994
).
14.
A. I.
Larkin
and
Yu. N.
Ovchinnikov
,
J. Low Temp. Phys.
34
,
409
(
1979
).
15.
R. G.
Hampshire
and
M. T.
Taylor
,
J. Phys. F
2
,
89
(
1972
).
16.
T.
Matsushita
and
H.
Küpfer
,
J. Appl. Phys.
63
,
5048
(
1988
).
17.
C.
Meingast
and
D. C.
Larbalestier
,
J. Appl. Phys.
66
,
5971
(
1989
).
18.
C. P.
Bean
and
J. D.
Jones
,
Phys. Rev. Lett.
12
,
14
(
1964
).
19.
X. G.
Qui
,
S.
Takahashi
, and
M.
Tachiki
,
Physica C
216
,
49
(
1993
).
20.
A. Gurevich and L. D. Cooley, Phys. Rev. B 13563 (1994).
21.
L. D.
Cooley
,
P. J.
Lee
, and
D. C.
Larbalestier
,
Phys. Rev. B
53
,
6638
(
1996
).
22.
E. M.
Gyorgy
,
R. B.
von Dover
,
K. A.
Jackson
,
L. F.
Schneemeyer
, and
J. V.
Waszczak
,
Appl. Phys. Lett.
55
,
283
(
1989
).
23.
F. M.
Sauerzopf
,
H. P.
Wiesinger
, and
H. W.
Weber
,
Cryogenics
30
,
650
(
1990
).
24.
R. W.
Heussner
,
C.
Bormio Nunes
,
P. J.
Lee
,
P. D.
Jablonski
, and
D. C.
Larbalestier
,
J. Appl. Phys.
80
,
1640
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.