We present a fast algorithm for calculations of the temperature distributions induced by the energy beam in the three‐dimensional deposits of arbitrary shape. It combines analytical approximations, numerical fast Fourier transform, and the multigrid technique. The accuracy of the method is demonstrated with problems that can be solved analytically. The behavior of the center temperature in laser‐deposited spots and stripes of different shapes and sizes is studied. The results can explain explosive growth in laser‐induced deposition and instabilities in laser direct writing, and provide a tool for a quantitative analysis of energy beam microprocessing.

1.
D. Bäuerle, Laser Chemical Processing (Springer, Berlin, 1986);
Laser Processing and Chemistry (Springer, Berlin, 1996).
2.
Laser Microfabrication-Thin Film Processes and Lithography, edited by D. J. Ehrlich and J. Y. Tsao (Academic, New York, 1989).
3.
Laser and Particle-Beam Chemical Processing for Microelectronics, edited by D. J. Ehrlich, G. S. Higashi, and M. M. Oprysko, Proc. MRS, Vol. 101 (North Holland, New York, 1987).
4.
T. H.
Baum
and
P. B.
Comita
,
Thin Solid Films
218
,
80
(
1992
).
5.
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, New York, 1959).
6.
M.
Lax
,
J. Appl. Phys.
50
,
3919
(
1977
).
7.
M.
Lax
,
Appl. Phys. Lett.
33
,
786
(
1978
).
8.
M. L.
Burgener
and
R. E.
Reedy
,
J. Appl. Phys.
53
,
4357
(
1982
).
9.
E.
Abraham
and
J. M.
Halley
,
Appl. Phys. A
42
,
279
(
1987
).
10.
I. D.
Calder
and
R.
Sue
,
J. Appl. Phys.
53
,
7545
(
1982
).
11.
Y. I.
Nissim
,
A.
Lietoila
,
R. B.
Gold
, and
J. F.
Gibbons
,
J. Appl. Phys.
51
,
274
(
1980
).
12.
D. J.
Ehrlich
and
J. Y.
Tsao
,
J. Vac. Sci. Technol. B
1
,
969
(
1983
).
13.
D. J.
Ehrlich
,
Appl. Surf. Sci.
69
,
115
(
1993
).
14.
K. Piglmayer, Ph.D. thesis, Linz, 1986.
15.
K. Piglmayer, J. Doppelbauer, and D. Bäuerle, in Laser Controlled Chemical Processing of Surfaces, edited by A. W. Johnson, D. J. Ehrlich, and H. R. Schlossberg (North Holland, New York, 1984), p. 47.
16.
T. T.
Codas
,
T. H.
Baum
, and
P. B.
Comita
,
J. Appl. Phys.
61
,
2749
(
1987
).
17.
C.
Garrido
,
B.
Leon
, and
M.
Perez-Amor
,
J. Appl. Phys.
69
,
1133
(
1991
).
18.
D. C.
Skouby
and
K. F.
Jensen
,
J. Appl. Phys.
63
,
198
(
1987
).
19.
J.
Han
and
K. F.
Jensen
,
J. Appl. Phys.
75
,
2240
(
1994
).
20.
N.
Arnold
and
D.
Bäuerle
,
Microelectron. Eng.
20
,
31
(
1993
).
21.
N.
Arnold
,
P. B.
Kargl
, and
D.
Bäuerle
,
Appl. Surf. Sci.
86
,
457
(
1994
).
22.
N. Kirichenko, Y. Khavin, and N. Arnold (unpublished).
23.
N.
Arnold
and
D.
Bäuerle
,
Microelectron. Eng.
20
,
43
(
1993
).
24.
G. E. Korn and T. E. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1972).
25.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw- Hill, New York, 1953).
26.
P. S. Landa, Oscillations of Distributed Systems (Nauka, Moscow, 1984).
27.
J. Mathews and R. L. Walker, Mathematical Methods of Physics (W.A. Benjamin, New York, 1970).
28.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, New York, 1992), pp. 490, 531, 862.
29.
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart & Winston, Philadelphia, 1976), p. 730.
30.
P. B.
Kargl
,
R.
Kullmer
, and
D.
Bäuerle
,
Appl. Phys. A
57
,
577
(
1993
).
31.
J. Doppelbauer and D. Bäuerle, in Interfaces Under Laser Irradiation, edited by L. D. Laude, D. Bäuerle, and M. Wautelet, NATO ASI Series E, Vol. 134 (Martinus Nijhoff, Dordrecht, 1987), p. 277.
32.
P. B.
Kargl
,
R.
Kullmer
, and
D.
Bäuerle
,
Appl. Phys. A
57
,
175
(
1993
).
33.
American Institute of Physics Handbook, edited by D. E. Gray (McGraw- Hill, New York, 1972).
This content is only available via PDF.
You do not currently have access to this content.