This article provides a theoretical investigation of recombination at grain boundaries in both bulk and pn junction regions of silicon solar cells. Previous models of grain boundaries and grain boundary properties are reviewed. A two dimensional numerical model of grain boundary recombination is presented. This numerical model is compared to existing analytical models of grain boundary recombination within both bulk and pn junction regions of silicon solar cells. This analysis shows that, under some conditions, existing models poorly predict the recombination current at grain boundaries. Within bulk regions of a device, the effective surface recombination velocity at grain boundaries is overestimated in cases where the region around the grain boundary is not fully depleted of majority carriers. For vertical grain boundaries (columnar grains), existing models are shown to underestimate the recombination current within pn junction depletion regions. This current has an ideality factor of about 1.8. An improved analytical model for grain boundary recombination within the pn junction depletion region is presented. This model considers the effect of the grain boundary charge on the electric field within the pn junction depletion region. The grain boundary charge reduces the pn junction electric field, at the grain boundary, enhancing recombination in this region. This model is in agreement with the numerical results over a wide range of grain boundary recombination rates. In extreme cases, however, the region of enhanced, high ideality factor recombination can extend well outside the pn junction depletion region. This leads to a breakdown of analytical models for both bulk and pn junction recombination, necessitating the use of the numerical model.

1.
A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells (Academic, New York, 1983).
2.
C. R. M.
Grovenor
,
J. Phys. C
18
,
4079
(
1985
).
3.
J. Thibault, J. L. Rouvière, and A. Bourret, in Materials Science and Technology: A Comprehensive Treatment, edited by R. W. Cahn, P. Haasen, and E. J. Kramer (Weinheim, New York, 1991), Vol. 4.
4.
H. C.
Card
and
E. S.
Yang
,
IEEE Trans. Electron Devices
ED-24
,
397
(
1977
).
5.
J. G.
Fossum
and
F. A.
Lindholm
,
IEEE Trans. Electron Devices
ED-27
,
692
(
1980
).
6.
P.
Panayotatos
and
H. C.
Card
,
IEEE Electron Device Lett.
1
,
263
(
1980
).
7.
C. H.
Seager
,
J. Appl. Phys.
52
,
3960
(
1981
).
8.
J.
Dugas
,
J. P.
Crest
,
C. M.
Singal
, and
J.
Oualid
,
Solid-State Electron.
26
,
1069
(
1983
).
9.
J.
Oualid
,
C. M.
Singal
,
J.
Dugas
,
J. P.
Crest
, and
H.
Amzil
,
J. Appl. Phys.
55
,
1195
(
1984
).
10.
D. P.
Joshi
and
D. P.
Bhatt
,
IEEE Trans. Electron Devices
ED-37
,
237
(
1990
).
11.
D. P.
Bhatt
and
D. P.
Joshi
,
J. Appl. Phys.
68
,
2338
(
1990
).
12.
D. P.
Joshi
and
D. P.
Bhatt
,
Sol. Energy Mater Cells
22
,
137
(
1991
).
13.
M. A. Green, Silicon Solar Cells: Advanced Principles and Practice (Centre for Photovoltaic Devices and Systems, Sydney, 1995).
14.
M. A.
Green
,
J. Appl. Phys.
80
,
1515
(
1996
).
15.
N. C.
Halder
and
T. R.
Williams
,
Sol. Cells
8
,
201
(
1983
).
16.
J.
Dugas
and
J.
Oualid
,
Sol. Cells
20
,
167
(
1987
).
17.
S.
Banerjee
and
H.
Saha
,
Sol. Cells
28
,
77
(
1990
).
18.
J.
Dugas
,
Sol. Energy Mater. Sol. Cells
32
,
71
(
1994
).
19.
A. G. M. Strollo and G. F. Vitale, Proceedings of the 22nd IEEE Photovoltaic Specialists Conference (IEEE, New York, 1991), pp. 388–392.
20.
E. G.
Lee
and
H. B.
Im
,
J. Electrochem. Soc.
138
,
3465
(
1991
).
21.
S.
Hasegawa
,
E.
Fujimoto
,
T.
Inokuma
, and
Y.
Kurata
,
J. Appl. Phys.
77
,
357
(
1995
).
22.
T. J.
King
,
M. G.
Hack
, and
I.-W.
Wu
,
J. Appl. Phys.
75
,
908
(
1994
).
23.
G.
Fortunato
,
D. B
Meakin
,
P.
Migliorato
, and
P. G.
LeComber
,
Philos. Mag. B
57
,
573
(
1988
).
24.
D.
He
,
N.
Okada
,
C. M.
Fortmann
, and
I.
Shimizu
,
J. Appl. Phys.
76
,
4728
(
1994
).
25.
C.
Hassler
,
G.
Pensl
,
M.
Schulz
,
A.
Voigt
, and
H. P.
Strunk
,
Phys. Status Solidi A
137
,
463
(
1993
).
26.
M. R.
Murti
and
K. V.
Reddy
,
J. Appl. Phys.
70
,
3683
(
1991
).
27.
J.
Palm
,
J. Appl. Phys.
74
,
1169
(
1993
).
28.
E. S.
Yang
,
E.
Poon
,
H. L.
Evans
,
W.
Hwang
,
J. S.
Song
, and
C. M.
Wu
,
Proc. SPIE
385
,
59
(
1983
).
29.
A.
Pecora
,
M.
Schillizzi
,
G.
Tallarida
,
G.
Fortunato
,
C.
Reita
, and
P.
Migliorato
,
Solid-State Electron.
38
,
845
(
1995
).
30.
DESSIS 3.0 Manual (ISE Integrated Systems Engineering AG, Zurich, Switzerland, 1996).
31.
A. B.
Sproul
and
M. A.
Green
,
J. Appl. Phys.
70
,
846
(
1991
).
32.
S. J.
Robinson
,
A. G.
Aberle
, and
M. A.
Green
,
J. Appl. Phys.
76
,
7920
(
1994
).
33.
M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (The University of New South Wales Press, Sydney, 1992).
34.
C. M.
Singal
and
B.
Prasad
,
Int. J. Electron.
54
,
221
(
1983
).
35.
The reader can refer to any elementary text on electrostatics. See, for example, D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, Reading, MA, 1983), Chap. 3.
36.
A.
Neugroschel
and
J. A.
Mazer
,
IEEE Trans. Electron Devices
29
,
225
(
1982
).
37.
G. A. M.
Hurkx
,
D. B. M.
Klaassen
, and
M. P. G.
Knuvers
,
IEEE Trans. Electron Devices
39
,
331
(
1992
).
38.
A.
Schenk
,
Solid-State Electron.
35
,
1585
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.