Methods are developed to estimate the adhesion and surface free energies of compliant materials from the contact deformations of cylindrical lenses with flat sheets. Some important differences are found between the cylindrical contact studied here and the widely studied geometry of spherical contact. For example, while the pull‐off force is completely independent of the elastic constants (K) of the materials for spherical contacts, the pull‐off force for cylindrical contact is proportional to K1/3. Furthermore, for cylindrical contacts the contact width at separation reaches to a value of 39% of the width (a0) at zero load, whereas the corresponding value is 0.63a0 for spherical contact. The feasibility of using cylindrical contacts to estimate the surface and adhesive energies of polymers was investigated using elastomeric polydimethylsiloxane (PDMS) as a model system. PDMS was used in two ways: (1) unmodified and (2) with its surface hydrolyzed with dilute hydrochloric acid. Significant hysteresis of adhesion was observed with the hydrolyzed PDMS surfaces due to H‐bonding interactions, which appeared to depend on normal stress.

1.
K. L.
Johnson
,
K.
Kendall
, and
A. D.
Roberts
,
Proc. R. Soc. London, Ser. A
324
,
301
(
1971
).
2.
K.
Kendall
,
J. Phys. D: Appl. Phys.
5
,
1782
(
1973
);
K.
Kendall
,
8
,
1449
(
1973
); ,
J. Phys. D
K.
Kendall
,
Proc. R. Soc. London, Ser. A
341
,
409
(
1975
);
K.
Kendall
,
344
,
287
(
1975
); ,
Proc. R. Soc. London, Ser. A
K.
Kendall
,
J. Adhes.
7
,
137
(
1975
);
K.
Kendall
,
J. Mater. Sci.
11
,
638
(
1976
);
K.
Kendall
,
10
,
1011
(
1975
).,
J. Mater. Sci.
3.
A. D.
Roberts
and
A. B.
Othman
,
Wear
42
,
119
(
1977
).
4.
D.
Tabor
,
J. Colloid Interface Sci.
58
,
2
(
1977
).
5.
A. E.
Lee
,
J. Colloid Interface Sci.
64
,
577
(
1978
).
6.
R. G.
Horn
,
J. N.
Israelachvili
and
F.
Pribac
,
J. Colloid Interface Sci.
115
,
480
(
1987
).
7.
M. K.
Chaudhury
and
G. M.
Whitesides
,
Langmuir
7
,
1013
(
1991
).
8.
M. K.
Chaudhury
and
M. J.
Owen
,
J. Phys. Chem.
97
,
5722
(
1993
).
9.
M. K.
Chaudhury
and
G. M.
Whitesides
,
Science
255
,
1230
(
1992
).
10.
M. K.
Chaudhury
,
J. Adhes. Sci. Technol.
7
,
669
(
1993
).
11.
H. Haidara, M. K. Chaudhury, and M. J. Owen, J. Phys. Chem. (in press).
12.
V.
Mangipudi
,
M.
Tirrell
, and
A. V.
Pocius
,
J. Adhes. Sci. Technol.
8
,
1251
(
1994
);
W. W.
Merrill
,
A. V.
Pocius
,
B.
Thakkar
, and
M.
Tirrell
,
Langmuir
7
,
1975
(
1991
).
13.
M.
Deruelle
,
L.
Leger
, and
M.
Tirrell
,
Macromolecules
28
,
1995
(
1995
).
14.
K.
Kendall
,
J. Adhes.
5
,
179
(
1973
).
15.
Y. L.
Chen
,
C. A.
Helm
, and
J. N.
Israelachvili
,
J. Phys. Chem.
95
,
10737
(
1991
).
16.
P.
Silberzan
,
S.
Perutz
,
E. J.
Kramer
, and
M. K.
Chaudhury
,
Langmuir
10
,
2466
(
1994
).
17.
M. E. R.
Shanahan
and
J.
Michel
,
Int. J. Adhes.
11
,
170
(
1991
);
see also
M. F.
Vallat
,
P.
Ziegler
,
P.
Vondracek
, and
J.
Schultz
,
J. Adhes.
35
,
95
(
1991
).
18.
D. S.
Rimai
,
L. P.
DeMejo
, and
R. C.
Bowen
,
J. Appl. Phys.
68
,
6234
(
1990
);
R. C.
Bowen
,
D. S.
Rimai
, and
L. P.
DeMejo
,
J. Adhes. Sci. Technol.
3
,
623
(
1989
);
L. P.
DeMejo
,
D. S.
Rimai
, and
R. C.
Bowen
,
J. Adhes. Sci. Technol.
2
,
331
(
1988
); ,
J. Adhes. Sci. Technol.
L. P.
DeMejo
,
D. S.
Rimai
, and
R. C.
Bowen
,
5
,
959
(
1991
).,
J. Adhes. Sci. Technol.
19.
K.
Kendall
,
Wear
33
,
351
(
1975
).
20.
M. K.
Chaudhury
and
M. J.
Owen
,
Langmuir
9
,
29
(
1993
).
21.
K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).
22.
D.
Maugis
and
M.
Barquins
,
J. Phys. Lett.
42
,
L95
(
1981
).
23.
K.
Kendall
,
J. Phys. D: Appl. Phys.
4
,
1186
(
1971
).
24.
A. D.
Roberts
,
Rubber Chem. Technol.
52
,
23
(
1979
).
25.
J. A.
Greenwood
and
K. L.
Johnson
,
Philos. Mag.
43
,
697
(
1981
);
D.
Maugis
and
M.
Barquins
,
J. Appl. Phys. D
11
,
1989
(
1978
).
26.
D. Maugis and M. Barquins, Adhesion and Adsorption of Polymers: Polymer Science and Technology, edited by L. H. Lee (Plenum, New York, 1980), Vol. 12A, p. 203;
M.
Barquins
and
R.
Courtel
,
Wear
32
,
133
(
1975
).
27.
M. J.
Barquins
,
Adhesion
26
,
1
(
1988
).
28.
In a recent personal communication with K. L. Johnson (1994) M.K.C. learned that Professor Johnson independently derived Eq. (8) to analyze some data of the rolling friction measurements.
29.
A. G. Martollock, International Conference on Elastoplastic Technology, Wayne State University, 24 March, 1966 (unpublished);
W. J.
Bobear
,
Rubber Age
84
,
448
(
1958
);
A. H. Horner, Division of Polymer Chemistry (American Chemical Society, Boston, 1959).
30.
In a separate study, we found that the formation of interfacial hydrogen bonds follows roughly a second-order kinetics indicating a bimolecular reaction at the interface, from which we estimated the product of the concentration of the surface silanol and the second-order rate constant as 5.2×10−3min−1.
31.
When we performed similar experiments with spherical lenses (R = 1.2 mm), the W vs σ(x) plots lay slightly lower than the plots shown in Fig. 6. We believe the reason for this discrepancy is due to a combined effect of stress and contact time, which are different in these cases because of the differences in the radii of curvatures of the spherical lens and the cylinders (2 mm) used. However, when the sphere was allowed to make contact with the cylinder for a slightly longer period of time (∼10 min), the discrepancy became small.
This content is only available via PDF.
You do not currently have access to this content.