The trihydrate of nickelous bromide, NiBr2⋅3H2O, is examined magnetically for the first time. A Curie–Weiss fit, χM=C/(T−θ), to the susceptibility between 70 and 300 K yields g=2.31±0.01 (S=1) and θ=6.6±0.5 K. Systematic curvature in χ−1 vs T is evident below 70 K. Despite the positive θ, NiBr2⋅3H2O appears to order antiferromagnetically at Tc=3.82±0.05 K, somewhat below a maximum in χ(T) at Tmax)=6.17±0.10 K, with χmax=0.0900±0.0005 emu/mol. The ratio Tc/Tmax)=0.62±0.01 suggests lower magnetic dimensionality. Between 4 and 12 K an acceptable fit with a two‐dimensional Heisenberg model can be made, with g=2.58±0.01, J/k=−1.36±0.02 K (assuming Ĥex=−2JijŜiŜj), and a correction for interlayer exchange zJ′/k=−0.99±0.02 K. Well above Tc the susceptibility is analyzed assuming axial and rhombic crystal field distortions, i.e., D[Ŝ2zS(S+1)/3] and E[Ŝ2xŜ2y] spin Hamiltonian terms, with exchange included in a mean field approximation: g=2.33±0.02, D/k=57.3±5.0 K, E/k=−24.9±3.0 K, and zJ/k=5.28±0.20 K. The parameters are provisional lacking single‐crystal data, but the zero‐field splitting is clearly quite large. Magnetization versus field isotherms depart only slightly from linearity for fields above 10 kG, and show a small hysteresis, even for temperatures above Tc. It is likely that ferromagnetically coupled NiBr2NiBr2Ni... chains are present, and that there are antiferromagnetic interactions between chains, such that strongly coupled layers occur, with weaker interactions between layers.

1.
I.
Tsubokawa
,
J. Phys. Soc. Jpn.
15
,
2109
(
1960
).
2.
K.
Kopinga
and
W. J. M.
deJonge
,
Phys. Lett. A
43
,
415
(
1973
).
3.
S. N.
Bhatia
,
R. L.
Carlin
, and
A.
P.-Filho
,
Physica B
92
,
330
(
1977
).
4.
R. D.
Spence
,
H.
Forstat
,
G. A.
Khan
, and
G.
Taylor
,
J. Chem. Phys.
31
,
555
(
1959
).
5.
A. I.
Hamburger
and
S. A.
Friedberg
,
Physica
69
,
67
(
1973
).
6.
W. K.
Robinson
and
S. A.
Friedberg
,
Phys. Rev.
117
,
402
(
1960
).
7.
J. N.
McElearney
,
D. B.
Losee
,
S.
Merchant
, and
R. L.
Carlin
,
Phys. Rev. B
7
,
3314
(
1973
).
8.
C. C.
Becerra
,
N. F.
Oliveira
,
A.
P.-Filho
,
W.
Figueiredo
, and
M. V. P.
Souza
,
Phys. Rev. B
38
,
6887
(
1988
);
S. S.
Vianna
and
C. C.
Becerra
,
Phys. Rev. B
28
,
2816
(
1983
).,
Phys. Rev. B
9.
J. W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry (Longmans Green, London, 1936), Vol. XV, p. 426.
10.
D.
Weigel
,
Bull. Soc. Chim. (France)
10
,
2087
(
1963
).
11.
G. C.
DeFotis
,
B. K.
Failon
,
F. V.
Wells
, and
H. H.
Wickman
,
Phys. Rev. B
29
,
3795
(
1984
).
12.
M.
Karnezos
,
D. L.
Meier
, and
S. A.
Friedberg
,
Phys. Rev. B
17
,
4375
(
1978
).
13.
M. E.
Fisher
,
Philos. Mag.
7
,
1731
(
1962
).
14.
T.
Haseda
and
M.
Date
,
J. Phys. Soc. Jpn.
13
,
175
(
1958
).
15.
J. W.
Stout
and
W. B.
Hadley
,
J. Chem. Phys.
40
,
55
(
1964
).
16.
M. E.
Lines
,
J. Phys. Chem. Solids
31
,
101
(
1970
).
17.
C. H. W.
Swüste
,
A. C.
Botterman
,
J.
Mellenaar
, and
W. J. M.
deJonge
,
J. Chem. Phys.
66
,
5021
(
1977
).
18.
D. V.
Behere
,
S. K.
Date
, and
S.
Mitra
,
Chem. Phys. Lett.
68
,
544
(
1979
).
19.
W. deW.
Horrocks
and
D. A.
Burlone
,
J. Am. Chem. Soc.
98
,
6512
(
1976
).
20.
J. W.
Johnson
and
Y.-L.
Wang
,
Phys. Rev. B
24
,
5204
(
1981
);
D.H.-Y.
Yang
and
Y.-L.
Wang
,
Phys. Rev. B
12
,
1057
(
1975
).,
Phys. Rev. B
21.
A. I.
Nugmanov
and
L. R.
Tagirov
,
J. Magn. Magn Mater.
111
,
301
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.