Angular‐dependent magnetic Barkhausen noise (MBN) measurements were performed on a pipeline steel sample for various values of applied uniaxial stress at three angles with respect to the sample’s zero stress magnetic easy axis direction. It was observed that the response of the MBN signal to stress was dependent upon the direction of the stress with respect to the zero stress easy axis. The stress response of the MBN signal was greatest for (i) tensile stresses oriented perpendicular to the zero stress easy axis direction and (ii) compressive stresses applied parallel to the easy axis direction. The modification of the MBN signal under an applied stress was attributed primarily to a change in the 180° domain wall population in the material investigated. Results were described by a model that considered regions of locally correlated domain behavior, termed ‘‘interaction regions,’’ that were typically the size of grains within the steel material. A basic result of the model was the stress required to modify the number of 180° domain walls within an interaction region. Theoretical calculations of these threshold stresses for a typical grain size were found to be in agreement with the range of applied stresses that was observed to modify the angular‐dependent MBN signal obtained from the sample.

1.
T. W.
Krause
,
A.
Pattantyus
, and
D. L.
Atherton
,
IEEE Trans. Magn.
31
,
3376
(
1995
).
2.
R. M. Bozorth, Ferromagnetism (Van Nostrand Reinhold, New York, 1951), p. 595.
3.
S. Chikazumi and S. H. Charap, Physics of Magnetism (Krieger, Malabar, FL, 1964), p. 260.
4.
T. W.
Krause
,
L.
Clapham
, and
D. L.
Atherton
,
J. Appl. Phys.
75
,
7983
(
1994
).
5.
T. W.
Krause
,
J. M.
Makar
, and
D. L.
Atherton
,
J. Magn. Magn. Mater.
137
,
25
(
1994
).
6.
L.
Clapham
,
T. W.
Krause
,
H.
Olsen
,
B.
Ma
,
D. L.
Atherton
,
P.
Clark
, and
T. M.
Holden
,
NDT&E Int.
28
,
73
(
1995
).
7.
T. W.
Krause
,
J. A.
Szpunar
,
M.
Birsan
, and
D. L.
Atherton
,
J. Appl. Phys.
79
, March (
1996
).
8.
A.
Dhar
,
C.
Jagadish
, and
D. L.
Atherton
,
Mater. Eval.
50
,
1139
(
1992
).
9.
C.
Jagadish
,
L.
Clapham
, and
D. L.
Atherton
,
IEEE Trans. Magn.
26
,
262
(
1990
).
10.
H. C.
Kim
,
K. H.
Lee
,
C. G.
Kim
, and
D. G.
Hwang
,
J. Appl. Phys.
72
,
3626
(
1992
).
11.
O.
Schneeweis
and
S.
Havlicek
,
J. Magn. Magn. Mater.
129
,
186
(
1992
).
12.
J. Gauthier, T. W. Krause, and D. L. Atherton, NDT&E Int. (submitted).
13.
J. W.
Shilling
and
G. L.
Houze
, Jr.
,
IEEE Trans. Magn.
MAG-10
,
195
(
1974
).
14.
B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972), p. 207.
15.
W. D.
Corner
and
J. J.
Mason
,
Proc. Phys. Soc.
81
,
925
(
1963
).
16.
J. M.
Makar
and
D. L.
Atherton
,
IEEE Trans. Magn.
30
,
1380
(
1994
).
17.
A.
Dhar
,
L.
Clapham
, and
D. L.
Atherton
,
Acta Metall. Mater.
41
,
129
(
1993
).
18.
L.
Clapham
,
C.
Jagadish
, and
D. L.
Atherton
,
Acta Metall. Mater.
39
,
1555
(
1991
).
19.
L.
Clapham
,
C.
Jagadish
,
D. L.
Atherton
, and
J. D.
Boyd
,
Mater. Sci. Eng. A
145
,
233
(
1991
).
20.
L. B.
Sipahi
,
J. Appl. Phys.
75
,
6978
(
1994
).
21.
A. J.
Moses
,
T.
Meydan
, and
H. F.
Lau
,
IEEE Trans. Magn.
31
,
4166
(
1995
).
22.
C.
Kittel
,
Rev. Mod. Phys.
21
,
541
(
1949
).
23.
D. C.
Jiles
,
J. Phys. D
28
,
1537
(
1995
).
24.
G.
Berttoti
,
IEEE Trans. Magn.
24
,
621
(
1988
).
25.
J. M.
Makar
and
D. L.
Atherton
,
IEEE Trans. Magn.
31
,
2220
(
1995
).
26.
G.
Bertotti
,
F.
Fiorillo
, and
M. P.
Sassi
,
J. Magn. Magn. Mater.
23
,
136
(
1981
).
27.
X.
Guo
and
D. L.
Atherton
,
IEEE Trans. Magn.
31
,
2510
(
1995
).
28.
T. W. Krause, P. Laursen, and D. L. Atherton (unpublished).
This content is only available via PDF.
You do not currently have access to this content.