High‐frequency (1 MHz–1 GHz) transmission line measurements were used to determine the composition and frequency‐dependent complex permittivities and complex permeabilities of ferroelectric/ferrimagnetic (barium titanate and a magnesium‐copper‐zinc ferrite) composites. The effective medium rules of Maxwell–Garnett give both lower and upper bounds for the effective permittivities and permeabilities and yield accurate estimates of the bulk electric and magnetic properties at low volume fill fraction of either component provided the proper host matrix is chosen. Bruggeman theory yielded the best predictive values for the permittivity and permeability over the entire composition range. In all cases these complex quantities were shown to be constrained by Bergman–Milton bounds.

1.
See, for example,
B.
Abeles
,
Appl. Solid State Sci.
6
,
1
(
1976
).
2.
B.
Abeles
,
P.
Sheng
,
M. D.
Coutts
, and
Y.
Arie
,
Adv. Phys.
24
,
407
(
1975
).
3.
D. J.
Bergman
,
Phys. Rep.
43
,
377
(
1978
).
4.
D. J.
Bergman
,
J. Phys. C
12
,
4947
(
1979
).
5.
D. J.
Bergman
,
Phys. Rev. B
19
,
2359
(
1979
).
6.
D. J.
Bergman
,
Phys. Rev. Lett.
44
,
1285
(
1980
).
7.
G. W.
Milton
,
Appl. Phys. Lett.
37
,
300
(
1980
).
8.
G. W.
Milton
,
Appl. Phys. A
26
,
125
(
1981
).
9.
D. J.
Bergman
,
Phys. Rev. B
23
,
3058
(
1981
).
10.
G. W.
Milton
,
J. Appl. Phys.
52
,
5286
(
1981
).
11.
G. W.
Milton
,
Phys. Rev. Lett.
46
,
542
(
1981
).
12.
D. M.
Grannan
,
J. C.
Garland
, and
D. B.
Tanner
,
Phys. Rev. Lett.
46
,
375
(
1981
).
13.
D. E.
Aspnes
,
Phys. Rev. Lett.
48
,
1629
(
1982
).
14.
D. J.
Bergman
,
Ann. Phys.
138
,
78
(
1982
).
15.
R. C.
McPhedran
,
D. R.
McKenzie
, and
G. W.
Milton
,
Appl. Phys. A
29
,
19
(
1982
).
16.
D. Bergman, in Homogenization and Effective Moduli of Materials and Media, edited by J. L. Ericksen, D. Kinderlehrer, R. Kohn, and J.-L. Lions (Springer, New York, 1986), pp. 27–51.
17.
J.
Korringa
and
G. A.
LaTorraca
,
J. Appl. Phys.
60
,
2966
(
1986
).
18.
D. J.
Bergman
and
D.
Stroud
,
Solid State Phys.
46
,
147
(
1992
).
19.
D. J.
Bergman
,
SIAM J. Appl. Math.
53
,
915
(
1993
).
20.
D. J.
Bergman
,
O.
Levy
, and
D.
Stroud
,
Phys. Rev. B
49
,
129
(
1994
).
21.
K. W.
Yu
,
Y. C.
Chu
, and
E. M. Y.
Chan
,
Phys. Rev. B
50
,
7984
(
1994
).
22.
C. A.
Grimes
and
D. M.
Grimes
,
Phys. Rev. B
43
,
10
780
(
1991
).
23.
C. A.
Grimes
and
D. M.
Grimes
,
J. Appl. Phys.
69
,
6186
(
1991
).
24.
B.
Abeles
,
H. L.
Pinch
, and
J. I.
Gittleman
,
Phys. Lett.
35
,
247
(
1975
).
25.
T.
Yamamoto
,
M.
Chino
,
R.
Tanaka
,
T.
Ueyama
, and
K.
Okazaki
,
Ferroelectrics
95
,
175
(
1989
).
26.
J.
van den Boomgaard
and
R. A. J.
Born
,
J. Mater. Sci.
13
,
1538
(
1978
).
27.
A. E.
Gelyasin
,
V. M.
Laletin
, and
L. I.
Trofimovich
,
Sov. Phys. Tech. Phys.
33
,
1361
(
1988
).
28.
J. Baker-Jarvis and R. G. Geyer, NIST Tech. Note 1355 (1992).
29.
J.
Baker-Jarvis
,
R. G.
Geyer
, and
P.
Domich
,
IEEE Trans. Instrum. Meas.
IM-41
,
646
(
1992
).
30.
Field excitation was kept to a minimum to ensure linear response from the composite materials.
31.
F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon, New York, 1962), p. 114.
32.
J. Smit and H. P. J.Wijn, Ferrites (Wiley, Eindhoven, 1959), pp. 292–293.
33.
S.
Prager
,
J. Chem. Phys.
50
,
4305
(
1969
).
34.
L. K. H. van Beek, Progress in Dielectrics (Heywood, London, 1967), Vol. 7, p. 69.
35.
R.
Landauer
,
AIP Conf. Proc.
40
, (
1978
).
36.
D. A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
636
(
1935
).
37.
R. G. Geyer, J. Mantese, and J. Baker-Jarvis, NIST Tech. Note 1371 (1994).
This content is only available via PDF.
You do not currently have access to this content.