Zinc selenide layers grown by molecular beam epitaxy (MBE) and doped with ZnO have been characterized using low temperature photoluminescence (PL) measurements as a function of excitation level, temperature, and laser energy (i.e., selectively excited donor‐acceptor pair luminescence or SPL), as well as reflectance measurements. An O‐related donor‐to‐acceptor (D0A0) pair band is clearly observed in all of the ZnO‐doped layers, whose position varies from 2.7196 to 2.7304 eV, depending on the excitation level. The same peak occurs in a number of undoped, As‐doped, and Ga‐doped MBE samples, showing that O can occur as a residual impurity. Temperature‐dependent measurements reveal the existence of a corresponding conduction band‐to‐acceptor (eA0) peak at 2.7372 eV (39.8 K), confirming the existence of the acceptor level. The binding energy of this acceptor is about 84±2 meV, which is 27 meV shallower than that of N. The SPL measurements reveal four excited states of the shallow acceptor level, separated from the 1s3/2 ground state by 48.2 (2p3/2), 57.1 (2s3/2), 64.3 (2p5/27), and 67.7 meV (3p3/28), respectively (all values ±1 meV). These energies fit well to conventional effective mass theory, which demonstrates that this O‐related acceptor level is effective‐mass‐like. However, luminescence and secondary ion mass spectrometry show that the ZnO doping technique introduces shallow donor impurities into the material in addition to O acceptors, specifically high levels of chemical contaminants (mainly B and Ga) originating from the doping source. This effect may account for the lack of reproducibility in obtaining p‐type conduction with ZnO doping, and suggests that more effective O incorporation methods should be devised.

1.
R. M.
Park
,
M. B.
Troffer
,
C. M.
Rouleau
,
J. M.
DePuydt
, and
M. A.
Haase
,
Appl. Phys. Lett.
57
,
2127
(
1990
).
2.
J.
Qiu
,
J. M.
DePuydt
,
H.
Cheng
, and
M. A.
Haase
,
Appl. Phys. Lett.
59
,
2992
(
1991
).
3.
K.
Ohkawa
,
T.
Karasawa
, and
T.
Mitsuyu
,
Jpn. J. Appl. Phys.
30
,
LI52
(
1991
).
4.
P. J.
Dean
,
W.
Stutius
,
G. F.
Neumark
,
B. J.
Fitzpatrick
, and
R. N.
Bhargava
,
Phys. Rev. B
27
,
2419
(
1983
).
5.
Y.
Zhang
,
W.
Liu
,
B. J.
Skromme
,
H.
Cheng
,
S. M.
Shibli
, and
M. C.
Tamargo
,
J. Cryst. Growth
138
,
310
(
1994
).
6.
J.
Han
,
M. D.
Ringle
,
Y.
Fan
,
R. L.
Gunshor
, and
A. V.
Nurmikko
,
Appl. Phys. Lett.
65
,
3230
(
1994
).
7.
K.
Akimoto
,
T.
Miyajima
, and
Y.
Mori
,
Phys. Rev. B
39
,
3138
(
1989
).
8.
K.
Akimoto
,
T.
Miyajima
, and
Y.
Mori
,
Jpn. J. Appl. Phys.
28
,
L531
(
1989
).
9.
K.
Akimoto
,
H.
Okuyama
,
M.
Ikeda
, and
Y.
Mori
,
Appl. Phys. Lett.
60
,
91
(
1991
).
10.
A.
Ohki
,
Y.
Kawaguchi
,
K.
Ando
, and
S.
Zembutsu
,
J. Cryst. Growth
117
,
102
(
1992
).
11.
M. P.
Kulakov
and
V. D.
Negriy
,
J. Cryst. Growth
101
,
525
(
1990
).
12.
J.
Ren
,
K. A.
Bowers
,
S.
Hwang
,
J. W.
Cook
, Jr.
, and
J. F.
Schetzina
,
J. Cryst. Growth
111
,
772
(
1991
).
13.
K.
Shahzad
,
K. S.
Jones
,
P. D.
Lowen
, and
R. M.
Park
,
Phys. Rev. B
43
,
9247
(
1991
).
14.
D. M.
Eagles
,
J. Phys. Chem. Solids
16
,
76
(
1960
).
15.
T.
Yao
,
Y.
Okada
,
S.
Matsui
,
K.
Ishida
, and
I.
Fujimoto
,
J. Cryst. Growth
81
,
518
(
1987
).
16.
B. J. Skromme, M. C. Tamargo, J. L. de Miguel, and R. E. Nahory, in Epitaxy of Semiconductor Layered Structures, edited by R. T. Tung, L. R. Dawson, and R. L. Gunshor, MRS Symposia Proceedings No. 102 (Material Research Society, Pittsburgh, PA, 1988), p. 577.
17.
B. J. Skromme, M. C. Tamargo, F. S. Turco, S. M. Shibli, W. A. Bonner, and R. E. Nahory, in Proceedings of the Fifteenth International Symposium on Gallium Arsenide and Related Compounds, edited by J. S. Harris, IOP Conf. Proc. No. 96 (Institute of Physics, Bristol, 1989), p. 205.
18.
K.
Ohkawa
,
T.
Mitsuyu
, and
O.
Yamazaki
,
Phys. Rev. B
38
,
12
465
(
1988
).
19.
R. N.
Bhargava
,
J. Cryst. Growth
86
,
873
(
1988
).
20.
Y. Zhang, B. J. Skromme, and H. Cheng, in Semiconductor Heterostructuresfor Electronic and Photonic Applications, edited by D. C. Houghton, C. W. Tu, and R. T. Tung, MRS Symposia Proceedings Vol. 281 (Materials Research Society, Pittsburgh, PA, 1993), p. 567.
21.
P. J.
Dean
,
D. C.
Herbert
,
C. J.
Werkhoven
,
B. J.
Fitzpatrick
, and
R. N.
Bhargava
,
Phys. Rev. B
23
,
4888
(
1981
).
22.
See, e.g., W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976), p. 891.
23.
See, e.g., P. J. Dean, in Progress in Solid State Chemistry, edited by J. O. McCaldin and G. Somorjai, Vol. 8 (Pergamon, Oxford, 1973), p. 1.
24.
Y.
Zhang
,
B. J.
Skromme
, and
H.
Cheng
,
Phys. Rev. B
47
,
2107
(
1993
).
25.
P. J.
Dean
and
J. L.
Merz
,
Phys. Rev.
178
,
1310
(
1969
).
26.
T.
Kamiya
and
E.
Wagner
,
J. Appl. Phys.
48
,
1928
(
1977
).
27.
B. J.
Skromme
and
G. E.
Stillman
,
Phys. Rev. B
29
,
1982
(
1984
).
28.
See, e.g.,
P. J.
Dean
,
Prog. Cryst. Growth Charact.
5
,
89
(
1982
), and references cited therein.
29.
H.
Tews
,
H.
Venghaus
, and
P. J.
Dean
,
Phys. Rev. B
19
,
5178
(
1979
).
30.
A.
Baldereschi
and
N. O.
Lipari
,
Phys. Rev. B
8
,
2697
(
1973
).
31.
A.
Baldereschi
and
N. O.
Lipari
,
Phys. Rev. B
9
,
1525
(
1974
).
32.
N. O.
Lipari
,
Phys. Lett.
81A
,
75
(
1981
).
33.
H.
Venghaus
,
Phys. Rev. B
19
,
3071
(
1979
).
34.
J. L.
de Miguel
,
S. M.
Shibli
,
M. C.
Tamargo
, and
B. J.
Skromme
,
Appl. Phys. Lett.
53
,
2065
(
1988
).
35.
S. M.
Shibli
,
M. C.
Tamargo
,
B. J.
Skromme
,
S. A.
Schwarz
,
C. L.
Schwartz
,
R. E.
Nahory
, and
R. J.
Martin
,
J. Vac. Sci. Technol. B
8
,
187
(
1990
).
36.
M.
Schmidt
,
Phys. Status Solidi B
79
,
533
(
1977
).
37.
Y.
Zhang
,
B. J.
Skromme
, and
F. S.
Turco-Sandroff
,
Phys. Rev. B
46
,
3872
(
1992
).
38.
D. E.
Dietz
,
D. G.
Thomas
, and
J. J.
Hopfield
,
Phys. Rev. Lett.
8
,
391
(
1962
).
39.
J. J.
Hopfield
,
D. G.
Thomas
, and
R. T.
Lynch
,
Phys. Rev. Lett.
17
,
312
(
1966
).
40.
G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-two Point Groups (MIT Press, Cambridge, MA, 1963).
41.
G. L.
Bir
,
G. E.
Pikus
,
L. G.
Suslina
, and
D. L.
Fedorov
,
Sov. Phys. Solid State
12
,
926
(
1970
).
42.
E.
Cohen
and
M. D.
Sturge
,
Phys. Rev. B
15
,
1039
(
1977
).
43.
Y.
Zhang
,
Phys. Rev. B
45
,
9025
(
1992
).
44.
D. G.
Thomas
and
J. J.
Hopfield
,
Phys. Rev.
150
,
680
(
1966
).
45.
Y.
Zhang
,
W.
Ge
, and
M. D.
Sturge
,
Phys. Rev. B
47
,
6330
(
1993
).
46.
J. Chen and B. J. Skromme (unpublished data).
47.
Yu. A.
Pashchenko
and
N. K.
Morozova
,
Sov. Phys. J.
32
,
922
(
1989
).
48.
J. D.
Dow
,
S. Y.
Ren
,
J.
Shen
,
R.
Hong
, and
R.
Wang
,
J. Electron. Mater.
19
,
829
(
1990
).
49.
J. D.
Dow
,
R.
Hong
,
S.
Klemm
,
S. Y.
Ren
,
M.
Tsai
,
O. F.
Sankey
, and
R. V.
Kasowski
,
Phys. Rev. B
43
,
4396
(
1991
).
50.
C. S.
Lent
,
M. A.
Bowen
,
R. S.
Allgaier
,
J. D.
Dow
,
O. F.
Sankey
, and
E. S.
Ho
,
Solid State Commun.
61
,
83
(
1987
).
51.
D. J.
Chadi
,
J. Cryst. Growth
138
,
295
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.