The thermopower η of Sr1−xLaxTiO3 ceramics was investigated up to x=0.5 and in the temperature range between 150 K and 1200 K. In addition, the carrier concentration n was determined by Hall measurements and by a chemical Ti3+‐analysis. For low temperatures and high n, η depends linearly on temperature and on n−2/3, as expected from a degenerate quasi free electron gas. In the case of high temperatures and low n, the absolute value of η rises with 1.5⋅ln10⋅k/e per decade of temperature and with ln10⋅k/e per decade of carrier concentration, as expected from a classical broad‐band semiconductor obeying the Boltzmann statistics. In the range of degeneration an effective mass meff of 4.2 electron masses can be deduced without the assumption of a transport factor Ae. In the classical range Ae=3 can be evaluated, requiring only a temperature and lanthanum independent meff. Thus, the thermopower of Sr1−xLaxTiO3 ceramics can be described by a constant effective mass and a constant transport factor within a wide range of temperature and lanthanum content. Furthermore, the transition from degeneration to classical behavior can be described as a function of temperature and electron density, e.g., at room temperature it takes place at about x≊0.2 (i.e., n≊3.4⋅1021/cm3).

1.
J.
Gerblinger
and
H.
Meixner
,
J. Appl. Phys.
67
,
7453
(
1990
).
2.
K. H.
Yoon
,
C. H.
Kim
, and
T. H.
Kim
,
J. Appl. Phys.
67
,
868
(
1990
).
3.
J. Funayama, M. Masuyama, and N. Yamaoka, in “Advances in Varistor Technology,” Ceramic Transactions, edited by L. M. Levinson, Vol. 3 (New York, 1989), 1st ed., p. 381.
4.
H. Arai and T. Seiyama, in Sensors. A Comprehensive Survey, edited by W. Göpel, J. Hesse, and J. N. Zemel, Vol. 3, Part II (Weinheim, Germany, 1992), p. 981.
5.
R. Moos, Ph.D. thesis, Karlsruhe, Germany, 1994 (in German).
6.
A. F. Joffe, Physik der Halbleiter, Berlin, Germany, 1958, p. 292 (in German).
7.
P.
Gerthsen
,
K. H.
Härdtl
, and
A.
Csillag
,
Phys. Status Solidi A
13
,
127
(
1972
).
8.
J.
Daniels
and
K. H.
Hardtl
,
Philips Res. Rep.
31
,
489
(
1976
).
9.
N. G.
Eror
and
U.
Balachandran
,
J. Solid State Chem.
42
,
227
(
1982
).
10.
N. H.
Chan
,
R. K.
Sharma
, and
D. M.
Smyth
,
J. Electrochem. Soc.
128
,
1762
(
1981
).
11.
G. M.
Choi
and
H. L.
Tuller
,
J. Am. Ceram. Soc.
71
,
201
(
1988
).
12.
N.
Tufte
and
P. W.
Chapman
,
Phys. Rev.
155
,
796
(
1967
).
13.
R. Moos, W. Menesklou, A. Gnudi, and K. H. Härdtl, Electroceramics IV, Proceedings of the 4th International Conference on Electronic Ceramics & Applications, Aachen 1994, Vol. 2, p. 685.
14.
A.
Miiller
and
K. H.
Hardtl
,
Appl. Phys. A
49
,
75
(
1989
).
15.
R.
Moos
,
W.
Menesklou
, and
K. H.
Hardtl
,
Appl. Phys. A
61
,
389
(
1995
).
16.
G. V.
Bois
,
N. A.
Mikhailova
,
E. I.
Prodavtsova
, and
V. A.
Yusova
,
Inorg. Mater.
12
,
1302
(
1976
).
17.
J.
Novák
and
H.
Arend
,
J. Am. Ceram. Soc.
47
,
530
(
1964
).
18.
W. Greiner, L. Neise, and H. Stöcker, Thermodynamik und Statistische Mechanik (Thun, Switzerland, 1987), p. 355 (in German).
19.
J. M. Ziman, “The Ordinary Transport Properties of Metals,” in The Physics of Metals, edited by J. M. Ziman (Cambridge Press, UK, 1969), p. 275.
20.
J. B.
Goodenough
,
Progr. Sol. State Chem.
5
,
145
(
1983
).
21.
H. P. R.
Frederikse
and
W. R.
Hosler
,
Phys. Rev.
134
, (
2A
),
A442
(
1964
).
22.
W.
Gong
,
H.
Yun
,
Y. B.
Ning
,
J. E.
Greedan
,
W. R.
Datars
, and
C. V.
Stager
,
J. Solid State Chem.
90
,
320
(
1991
).
23.
G. M.
Choi
,
H. L.
Tuller
, and
D.
Goldschmidt
,
Phys. Rev. B
34
,
6972
(
1986
).
24.
Y.
Fujishima
,
Y.
Tokura
,
T.
Arima
, and
S.
Uchida
,
Physica C
185–189
,
1001
(
1991
).
25.
W. D.
Johnston
and
D.
Sestrich
,
J. Inorg. Nucl. Chem.
61
,
32
(
1961
).
This content is only available via PDF.
You do not currently have access to this content.