Absorption coefficients for n‐ and p‐type InP are reported for the first time in the energy range of 1.3–3.0 eV in this paper. In order to obtain absorption coefficients in the higher energy range of 1.8–3.0 eV, extremely thin (∼0.2 μm) InP samples were fabricated and bonded to glass substrates. For measurements in the lower energy range of 1.3–1.6 eV, samples with thickness in the range of 0.5–0.9 μm were found to be optimum. For energies below 1.6 eV, the absorption coefficients are a strong function of the doping concentration. However, in the energy range of 1.8–3.0 eV there is little doping dependence and the measured absorption coefficients follow the theoretical calculations. In the case of n‐type samples, absorption coefficients decrease with increasing doping concentration and the absorption edge moves to higher energy due to the Burstein–Moss effect. For p‐type samples, the absorption edge shifts to lower energies due to transitions between band tails. Model calculations show that the use of accurate doping‐dependent absorption coefficients reported in this paper, as opposed to the commonly used absorption coefficients of undoped InP, can result in significant improvement in the predicted internal quantum efficiency and device parameters of InP solar cells.

1.
M.
Yamaguchi
,
C.
Uemura
, and
A.
Yamamoto
,
J. Appl. Phys.
55
,
1429
(
1984
).
2.
M.
Yamaguchi
,
C.
Uemura
,
A.
Yamamoto
, and
A.
Shibukawa
,
Jpn. J. Appl. Phys.
23
,
302
(
1984
).
3.
I. Weinberg, C. K. Swartz, and R. E. Hart, Proceedings of the 18th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1985), p. 1722.
4.
I. Weinberg, C. K. Swartz, R. E. Hart, and R. L. Statler, Proceedings of the 19th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1986), p. 548.
5.
G.
Augustine
,
N. M.
Jokerst
, and
A.
Rohatgi
,
Appl. Phys. Lett.
61
,
1429
(
1992
).
6.
H. C.
Casey
,
D. D.
Sell
, and
K. W.
Wecht
,
J. Appl. Phys.
46
,
250
(
1975
).
7.
M.
Cardona
,
J. Appl. Phys.
32
,
958
(
1961
).
8.
D. E.
Aspnes
and
A. A.
Studna
,
Phys. Rev. B
27
,
985
(
1983
).
9.
M.
Bugajski
and
W.
Lewandowski
,
J. Appl. Phys.
57
,
521
(
1985
).
10.
R.
Newman
,
Phys. Rev.
111
,
1518
(
1958
).
11.
W. P.
Dumke
,
M. R.
Lorenz
, and
G. D.
Pettit
,
Phys. Rev. B
1
,
4668
(
1970
).
12.
W. J.
Turner
,
Phys. Rev. A
136
,
1467
(
1964
).
13.
J. I. Pankove, in Optical Processes in Semiconductors (Dover, New York, 1975), p. 93.
14.
C. J. Keavney (private communications).
15.
O. Glembocki and H. Pillar, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, New York, 1985), p. 503.
16.
E.
Burstein
,
Phys. Rev.
93
,
632
(
1954
).
17.
T. S.
Moss
,
Proc. Phys. Soc. London B
76
,
775
(
1954
).
18.
H. C.
Casey
and
F.
Stern
,
J. Appl. Phys.
47
,
631
(
1976
).
19.
P. A. Basore, D. T. Rover, and A. W. Smith, Proceedings of the 20th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1988), p. 389.
This content is only available via PDF.
You do not currently have access to this content.