Phosphorus is one of several dopants that electronically compensate the native deep donor responsible for the yellow coloration observed in bismuth silicon oxide (BSO). Low‐temperature optical absorption measurements of a series of Czochralski‐grown P‐doped BSO crystals show that ∼0.1–0.15 at. % P is needed in the sample to fully remove the yellow coloration. The absorption cutoff in the fully compensated P‐doped sample was at 3.2 eV while compensated Al‐ and Ga‐doped samples cutoff at 3.35 eV. Excitation at 10–15 K with near band‐edge light produces photochromic absorption bands. In the lightly‐doped (partially bleached) samples these bands were identical to those observed in undoped BSO. In the fully bleached sample a new spectrum was observed. Its major contribution was a band centered near 1.8 eV with a weaker absorption in the blue‐green. By comparison with the spectra observed in undoped and in Al‐doped material before and after photoexcitation it is believed that the 1.8 eV band is due to the [PO4] center and that the broad 2.45 eV band observed in Al‐ and Ga‐doped BSO is due to the [BiO4]0 center.

1.
I.
Arizmendi
,
J. M.
Cabrera
, and
F.
Aguillo-Lopez
,
Int. J. Optoelectron.
7
,
149
(
1992
).
2.
S. L.
Hou
,
R. B.
Lauer
, and
R. E.
Aldrich
,
J. Appl. Phys.
44
,
2652
(
1973
).
3.
W.
Rehwald
,
K.
Frick
,
G. K.
Lang
, and
E.
Meier
,
J. Appl. Phys.
47
,
1292
)
1976
).
4.
R.
Oberschmidt
,
Phys. Status Solidi A
89
,
263
(
1985
).
5.
B. C.
Grabmeyer
and
R.
Oberschmidt
,
Phys. Status Solidi A
96
,
199
(
1986
).
6.
M. T.
Harris
,
J. J.
Larkin
, and
J. J.
Martin
,
Appl. Phys. Lett.
60
,
27
(
1992
).
7.
H.-J.
Reyher
,
U.
Helwig
, and
O.
Thiemann
,
Phys. Rev. B
47
,
5638
(
1993
).
8.
B. Kh.
Kostyuk
,
A. Yu.
Kudzin
, and
G. Kh.
Sokauskic
,
Sov. Phys. Solid State
22
,
1529
(
1980
).
9.
T.
Takamori
and
D.
Just
,
J. Appl. Phys.
67
,
848
(
1990
).
10.
T.
Takamori
and
D.
Just
,
J. Appl. Phys.
69
,
3958
(
1991
).
11.
D.
Petre
,
I.
Pintilie
,
T.
Botila
, and
M. L.
Ciurea
,
J. Appl. Phys.
76
,
2216
(
1994
).
12.
A. P.
Elisev
,
V. A.
Nadolinny
, and
V. A.
Gusev
,
J. Struct. Chem.
223
,
484
(
1984
).
13.
M. G.
Jani
and
L. E.
Halliburton
,
J. Appl. Phys.
64
,
2022
(
1988
).
14.
I.
Foldvari
,
L. E.
Halliburton
,
G. J.
Edwards
, and
L.
Otsi
,
Solid State Commun.
77
,
181
(
1991
).
15.
R. B.
Lauer
,
J. Appl. Phys.
42
,
2147
(
1971
).
16.
H. J.
Bardeleben
,
J. Phys. D
16
,
29
(
1983
).
17.
W.
Wardzinski
,
N.
Baran
, and
M.
Szymczak
,
Physica B
11
,
47
(
1988
).
18.
D. W.
Hart
,
C. A.
Hunt
,
D. D.
Hunt
,
J. J.
Martin
,
Meckie T.
Harris
, and
J. J.
Larkin
,
J. Appl. Phys.
73
,
1443
(
1993
).
19.
J. J.
Martin
,
I.
Foldvari
, and
C. A.
Hunt
,
J. Appl. Phys.
70
,
7554
(
1991
).
20.
J. J. Martin, D. W. Hart, S. Hoefler, J. McCullough, and G. S. Dixon, CLEO Technical Digest, CTuK29 (1994).
21.
I.
Foldvari
,
J. J.
Martin
,
C. A.
Hunt
,
R. C.
Powell
,
R. J.
Reeves
, and
S. A.
Holmstrom
,
Opt. Mater.
2
,
25
(
1993
).
22.
D. W.
Hart
,
C. A.
Hunt
, and
J. J.
Martin
,
J. Appl. Phys.
73
,
3974
(
1993
).
23.
J. A. Weil, in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2, edited by C. R. Helms and B. E. Deal (Plenum, New York, 1993), p. 131.
24.
P. J.
Picone
,
J. Cryst. Growth
87
,
421
(
1988
).
25.
W. A. Guidoboni (private communication).
26.
P. K.
Grewal
and
M. J.
Lea
,
J. Phys. C: Solid State Phys.
16
,
247
(
1983
).
27.
O. F.
Shirmer
,
J. Physique
41,C6
,
479
(
1980
).
28.
Y.
Uchida
,
J.
Isoya
, and
J. A.
Weil
,
J. Phys. Chem.
83
,
3462
(
1979
).
29.
Y.
Uchida
,
J.
Isoya
, and
J. A.
Weil
,
J. Phys. Chem.
88
,
5255
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.