Ion beam synthesized polycrystalline semiconducting FeSi2 on Si(001) has been investigated by transmission measurements at temperatures between 10 and 300 K. The existence of a minimum direct band gap was demonstrated and its variation with the temperature was studied by means of a three‐parameter thermodynamic model and the Einstein model. Band tail states and states on a shallow impurity level were found to give rise to the absorption below the fundamental edge. The presence of an Urbach exponential edge was shown and the temperature dependence of the Urbach tail width was also studied based on the Einstein model. A strong structural disorder associated with grain boundaries between and within the FeSi2 grains and their related defects was found to be the dominant contribution at room temperature.

1.
M. C.
Bost
and
J. E.
Mahan
,
J. Appl. Phys.
58
,
2696
(
1985
).
2.
C. A.
Dirmitriadis
,
J. H.
Werner
,
S.
Logothetidis
,
M.
Stutzmann
, and
J.
Weber
,
J. Appl. Phys.
68
,
1726
(
1990
).
3.
U.
Birkholz
and
J.
Schelm
,
Phys. Status Solidi
27
,
413
(
1968
).
4.
J. E.
Mahan
,
K. M.
Geib
,
G. Y.
Robinson
,
G.
Bai
,
M-A.
Nicolet
, and
M.
Nathan
,
Appl. Phys. Lett.
56
,
2126
(
1990
).
5.
K. M.
Geib
,
J. E.
Mahan
,
R. G.
Long
,
M.
Nathan
, and
G.
Bai
,
Appl. Phys.
70
,
1730
(
1991
).
6.
D.
Gerthsen
,
K.
Radermacher
,
Ch.
Dieker
, and
S.
Mantl
,
J. Appl. Phys.
71
,
3788
(
1992
).
7.
T. D.
Hunt
,
B. J.
Sealy
,
K. J.
Reeson
,
R. M.
Gwilliam
,
K. P.
Homewood
,
R. J.
Wilson
,
C. D.
Meekison
, and
G. R.
Booker
,
Nucl. Instrum. Methods Phys. Res. B
74
,
60
(
1993
).
8.
K.
Radermacher
,
R.
Carius
, and
S.
Mantl
,
Nucl. Instrum. Methods Phys. Res. B
84
,
163
(
1994
).
9.
N. E.
Christensen
,
Phys. Rev. B
42
,
7148
(
1990
).
10.
H. V.
Kanel
,
U.
Kafader
,
P.
Sutter
,
N.
Onda
,
H.
Sirringhaus
,
E.
Muller
,
U.
Kroll
,
C.
Schwarz
, and
S.
Goncalves-conto
,
MRS Symp. Proc.
320
,
73
(
1993
).
11.
C.
Giannini
,
S.
Lagomarsino
,
F.
Scarinci
, and
P.
Castrucci
,
Phys. Rev. B
15
,
8822
(
1992
).
12.
K.
Lefki
,
P.
Muret
,
N.
Cherief
, and
R. C.
Cinti
,
J. Appl. Phys.
69
,
352
(
1991
).
13.
M. C.
Bost
and
J. E.
Mahan
,
J. Appl. Phys.
64
,
2034
(
1988
).
14.
J. I. Pankove, Optical Processes in Semiconductors, edited by J. N. Holongak (Dover, New York, 1975), p. 36.
15.
T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-electronics (Butterworths, London, 1973), p. 78.
16.
K. P.
O’Donnell
and
X.
Chen
,
Appl. Phys. Lett.
58
,
2924
(
1991
).
17.
G. D. Cody, Semiconductors and Semimetals (Academic, New York, 1984), Vol. 21, Part B, p. 44.
18.
C. H.
Grein
and
S.
John
,
Phys. Rev. B
39
,
1140
(
1989
).
19.
J.
Werner
,
W.
Jantsch
, and
H. J.
Queisser
,
Solid State Commun.
42
,
415
(
1982
).
20.
G.
Fortunato
,
D. B.
Meakin
,
P.
Migliorato
, and
P. G.
Le Comber
,
Philos. Mag. B
57
,
573
(
1988
).
21.
J.
Werner
and
M.
Peisl
,
Mater. Res. Soc. Symp. Proc.
46
,
575
(
1985
).
22.
C. M.
Soukoulis
,
M. H.
Cohen
, and
E. N.
Economou
,
Phys. Rev. Lett.
53
,
616
(
1984
).
23.
S.
Abe
and
Y.
Toyazawa
,
J. Phys. Soc. Jpn.
50
,
2185
(
1981
).
24.
G. D.
Cody
,
J. Non-Cryst. Solids
141
,
3
(
1992
).
25.
U.
Zammit
,
K. N.
Madhusoodanan
,
M.
Marinelli
,
F.
Scudieri
,
R.
Pizzoferrato
, and
F.
Mercuri
,
Phys. Rev.
49
,
49
(
1994
).
26.
Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, and K. J. Reeson, J. Mater. Sci. Lett. (in press).
27.
Z. Yang, G. Shao, K. P. Homewood, K. J. Reeson, M. S. Finney, and M. A. Harry (unpublished).
28.
M. S.
Finney
,
Z.
Yang
,
M. A.
Harry
,
K. J.
Reeson
,
K. P.
Homewood
,
R. M.
Gwilliam
, and
B. J.
Sealy
,
Mater. Res. Soc. Symp. Proc.
320
,
173
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.