Numerical simulations of quantum tunneling with time‐dependent barriers show that there is a resonance, with a marked increase in the tunneling current. For square barriers the resonance occurs when the tunneling particles absorb modulation quanta and the length of the barrier is a multiple of one‐half de Broglie wavelengths. The resonance has a similar mechanism with triangular barriers. However, the relationship is more complex because the absorption and emission of modulation quanta takes place throughout the full length of the barrier, whereas this exchange only occurs at the ends of a square barrier.

1.
P.
Gueret
,
E.
Marclay
, and
H.
Meier
,
Appl. Phys. Lett.
53
,
1617
(
1988
).
2.
D.
Esteve
,
J. M.
Martinis
,
C.
Urbina
,
E.
Turlot
,
M. H.
Devoret
,
H.
Grabert
, and
S.
Linkwitz
,
Phys. Scr. T
29
,
121
(
1989
).
3.
R.
Landauer
and
Th.
Martin
,
Rev. Mod. Phys.
66
,
217
(
1994
).
4.
H. Q.
Nguyen
,
P. H.
Cutler
,
T. E.
Feuchtwang
,
Z. -H.
Huang
,
Y.
Kuk
,
P. J.
Silverman
,
A. A.
Lucas
, and
T. E.
Sullivan
,
IEEE Trans. Electron Devices
36
,
2671
(
1989
).
5.
M.
Büttiker
and
R.
Landauer
,
Physica Scr.
32
,
429
(
1985
).
6.
M. J.
Hagmann
,
J. Vac. Sci. Technol. B
12
,
3191
(
1994
).
7.
M. J.
Hagmann
,
Appl. Phys. Lett.
66
,
789
(
1995
).
8.
M. Y.
Sumetskii
,
Sov. Tech. Phys. Lett.
11
,
448
(
1985
).
9.
H.
De Raedt
,
N.
Garcia
, and
J.
Huyghebaert
,
Solid State Commun.
76
,
847
(
1990
).
10.
A.
Pimpale
,
S.
Holloway
, and
R. J.
Smith
,
J. Phys. A
24
,
3533
(
1991
).
11.
N. M.
Miskovsky
,
S. H.
Park
,
P. H.
Cutler
, and
T. E.
Sullivan
,
J. Vac. Sci. Technol. B
12
,
2148
(
1994
).
12.
H. B. Keller, Numerical Methods for Two-Point Boundary-Value Problems (Dover, New York, 1992), pp. 39–71.
13.
L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968), pp. 101–104.
14.
P.
Gueret
,
U.
Kaufmann
, and
E.
Marclay
,
Electron. Lett.
21
,
344
(
1985
).
15.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London A
119
,
173
(
1928
).
16.
L.
Nordheim
,
Proc. R. Soc. London A
121
,
626
(
1928
).
17.
C. W.
Leming
and
A.
Van Smith
,
Am. J. Phys.
59
,
441
(
1991
).
18.
R. Shankar, Principles of Quantum Mechanics (Plenum, New York, 1980), pp. 490–492.
19.
M. J.
Hagmann
,
Int. J. Quantum. Chem.
52
,
271
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.