Numerical simulations of quantum tunneling with time‐dependent barriers show that there is a resonance, with a marked increase in the tunneling current. For square barriers the resonance occurs when the tunneling particles absorb modulation quanta and the length of the barrier is a multiple of one‐half de Broglie wavelengths. The resonance has a similar mechanism with triangular barriers. However, the relationship is more complex because the absorption and emission of modulation quanta takes place throughout the full length of the barrier, whereas this exchange only occurs at the ends of a square barrier.
REFERENCES
1.
P.
Gueret
, E.
Marclay
, and H.
Meier
, Appl. Phys. Lett.
53
, 1617
(1988
).2.
D.
Esteve
, J. M.
Martinis
, C.
Urbina
, E.
Turlot
, M. H.
Devoret
, H.
Grabert
, and S.
Linkwitz
, Phys. Scr. T
29
, 121
(1989
).3.
4.
H. Q.
Nguyen
, P. H.
Cutler
, T. E.
Feuchtwang
, Z. -H.
Huang
, Y.
Kuk
, P. J.
Silverman
, A. A.
Lucas
, and T. E.
Sullivan
, IEEE Trans. Electron Devices
36
, 2671
(1989
).5.
6.
7.
8.
9.
H.
De Raedt
, N.
Garcia
, and J.
Huyghebaert
, Solid State Commun.
76
, 847
(1990
).10.
A.
Pimpale
, S.
Holloway
, and R. J.
Smith
, J. Phys. A
24
, 3533
(1991
).11.
N. M.
Miskovsky
, S. H.
Park
, P. H.
Cutler
, and T. E.
Sullivan
, J. Vac. Sci. Technol. B
12
, 2148
(1994
).12.
H. B. Keller, Numerical Methods for Two-Point Boundary-Value Problems (Dover, New York, 1992), pp. 39–71.
13.
L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968), pp. 101–104.
14.
P.
Gueret
, U.
Kaufmann
, and E.
Marclay
, Electron. Lett.
21
, 344
(1985
).15.
16.
17.
18.
R. Shankar, Principles of Quantum Mechanics (Plenum, New York, 1980), pp. 490–492.
19.
This content is only available via PDF.
© 1995 American Institute of Physics.
1995
American Institute of Physics
You do not currently have access to this content.