A theoretical analysis of the multiloop dc superconducting quantum interference device (SQUID) magnetometer fabricated from low‐Tc (transition temperature) or high‐Tc materials is presented. Using simple analytic formulas, the essential parameters of a multiloop magnetometer can be estimated: the effective area A, the effective SQUID inductance L, the transfer function VΦ, and the flux density noise √SB. The theoretical predictions are compared with experimental results of seven different low‐Tc versions and good agreement is found. Based on the analytical description, a high‐Tc magnetometer design with a 7 mm pickup coil and 16 parallel loops giving a sufficiently small SQUID inductance L≂145 pH is presented. At T=77 K a voltage swing 2δV≂8 μV and a white noise √SB≂8 fT/√Hz are predicted assuming a critical current I0=20 μA and a normal resistance R=2 Ω per junction and a damping resistance Rd=R across the SQUID inductance.

1.
J. E.
Zimmerman
,
J. Appl. Phys.
42
,
4483
(
1971
).
2.
F.
Dettmann
,
W.
Richter
,
G.
Albrecht
, and
W.
Zahn
,
Phys. Status Solidi A
51
,
K185
(
1979
);
W.
Vodel
and
K.
Mäkiniemi
,
Meas. Sci. Technol.
3
,
1155
(
1992
).
3.
W. M.
Cromar
and
P.
Carelli
,
Appl. Phys. Lett.
38
,
723
(
1981
);
P.
Carelli
and
V.
Foglietti
,
J. Appl. Phys.
53
,
7592
(
1982
).
4.
W.
Richter
and
F.
Dettmann
,
Phys. Status Solidi A
49
,
K209
(
1978
).
5.
P.
Carelli
and
V.
Foglietti
,
J. Appl. Phys.
54
,
6065
(
1983
);
P.
Carelli
,
M. G.
Castellano
,
L.
Chiaventi
,
R.
Leoni
,
M.
Cirillo
, and
I.
Modena
,
J. Appl. Phys.
74
,
4194
(
1993
).
6.
D.
Drung
,
R.
Cantor
,
M.
Peters
,
H. J.
Scheer
, and
H.
Koch
,
Appl. Phys. Lett.
57
,
406
(
1990
).
7.
D.
Drung
,
R.
Cantor
,
M.
Peters
,
T.
Ryhänen
, and
H.
Koch
,
IEEE Trans. Magn.
MAG-27
,
3001
(
1991
).
8.
D.
Drung
and
H.
Koch
,
IEEE Trans. Appl. Supercond.
AS-3
,
2594
(
1993
).
9.
H.
Koch
,
R.
Cantor
,
D.
Drung
,
S. N.
Erné
,
K. P.
Matthies
,
M.
Peters
,
T.
Ryhänen
,
H. J.
Scheer
, and
H. D.
Hahlbohm
,
IEEE Trans. Magn.
MAG-27
,
2793
(
1991
).
10.
D. Drung, IEEE Trans. Appl. Supercond. AS-5 (in press, 1995).
11.
K.
Kazami
,
Y.
Takada
,
G.
Uehara
,
N.
Matsuda
, and
H.
Kado
,
Supercond. Sci. Technol.
7
,
249
(
1994
).
12.
F.
Ludwig
,
E.
Dantsker
,
R.
Kleiner
,
D.
Koelle
,
J.
Clarke
,
S.
Knappe
,
D.
Drung
,
H.
Koch
,
N. McN.
Afford
, and
T. W.
Button
,
Appl. Phys. Lett.
66
,
1418
(
1995
).
13.
D. Reimer, M. Schilling, S. Knappe, and D. Drung, IEEE Trans. Appl. Supercond. AS-5 (in press, 1995).
14.
M. B. Ketchen, W. J. Gallagher, A. W. Kleinsasser, S. Murphy, and J. R. Clem, in Superconducting Quantum Interference Devices and Their Applications, edited by H. D. Hahlbohm and H. Lübbig (Walter de Gruyter, Berlin, 1985), p. 865.
15.
J. M.
Jaycox
and
M. B.
Ketchen
,
IEEE Trans. Magn.
MAG-17
,
400
(
1981
).
16.
S. Tanaka, H. Itozaki, H. Toyoda, K. Adachi, K. Okajima, T. Nagaishi, and H. Kado, in Proceedings of the 6th International Symposium on Superconductivity, Hiroshima, Japan, October 26–29, 1993.
17.
F. W. Grover, Inductance Calculations Working Formulas and Tables (Dover, New York, 1962).
18.
O. Zinke and H. Seither, Widerstände, Kondensatoren, Spulen und ihre Werkstoffe (Springer, Berlin, 1982).
19.
W. H.
Chang
,
J. Appl. Phys.
50
,
8129
(
1979
).
20.
D.
Drung
and
H.
Koch
,
Supercond. Sci. Technol.
7
,
242
(
1994
).
21.
J. Clarke, in Superconducting Electronics, NATO ASI Series F59, edited by H. Weinstock and M. Nisenoff (Springer, Berlin, 1989), p. 87.
22.
R. F.
Voss
,
J. Low Temp. Phys.
42
,
151
(
1981
).
23.
C. D.
Tesche
and
J.
Clarke
,
J. Low Temp. Phys.
29
,
301
(
1977
);
J. J. P.
Bruines
,
V. J.
de Waal
, and
J. E.
Mooij
,
J. Low Temp. Phys.
46
,
383
(
1982
).,
J. Low Temp. Phys.
24.
V. J.
de Waal
,
P.
Schrijner
, and
R.
Llurba
,
J. Low Temp. Phys.
54
,
215
(
1984
).
25.
D.
Koelle
,
A. H.
Miklich
,
F.
Ludwig
,
E.
Dantsker
,
D. T.
Nemeth
, and
J.
Clarke
,
Appl. Phys. Lett.
63
,
2271
(
1993
).
26.
K.
Enpuku
,
Y.
Shimomura
, and
T.
Kisu
,
J. Appl. Phys.
73
,
7929
(
1993
).
27.
K. Enpuku, H. Doi, G. Tokita, and T. Maruo, IEEE Trans. Appl. Supercond. AS-5 (in press, 1995).
28.
K.
Enpuku
,
T.
Muta
,
K.
Yoshida
, and
F.
Irie
,
J. Appl. Phys.
58
,
1916
(
1985
);
K.
Enpuku
,
K.
Yoshida
, and
S.
Kohjiro
,
J. Appl. Phys.
60
,
4218
(
1986
).,
J. Appl. Phys.
29.
K.
Enpuku
,
H.
Doi
,
G.
Tokita
, and
T.
Maruo
,
Jpn. J. Appl. Phys.
33
,
722
(
1994
).
30.
T.
Ryhänen
,
H.
Seppä
,
R.
Ilmoniemi
, and
J.
Knuutila
,
J. Low Temp. Phys.
76
,
287
(
1989
).
31.
D.
Drung
and
W.
Jutzi
,
IEEE Trans. Magn.
MAG-21
,
430
(
1985
).
32.
D.
Drung
,
IEEE Trans. Appl. Supercond.
AS-4
,
121
(
1994
).
33.
M. N.
Keene
,
S. W.
Goodyear
,
N. G.
Chew
,
R. G.
Humphreys
,
J. S.
Satchell
,
J. A.
Edwards
, and
K.
Lander
,
Appl. Phys. Lett.
64
,
366
(
1994
).
34.
D. Drung, in Superconducting Devices and Their Applications, Springer Proceedings in Physics 64, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992), p. 351.
35.
R.
Cantor
,
D.
Drung
,
M.
Peters
, and
H.
Koch
,
J. Appl. Phys.
67
,
3038
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.